
Protein-Nano Object Integrator (ProNOI)

Supported by NIGMS, NIH, grant number: R01 GM093937

Lead scientist: Mr. Nicholas Smith

Benchmarking: Mr. Brandon Campbell

Background: With the progress of nanotechnology, one frequently has to model biological

macromolecules simultaneously with nano-objects. However, the atomic structures of the nano

objects are typically not available or they are solid state entities. Because of that, the researchers

have to investigate such nano systems by generating models of the nano objects in a manner that

the existing software be able to carry the simulations. In addition, it should allow generating

composite objects with complex shape by combining basic geometrical figures and embedding

biological macromolecules within the system.

Results: Here we report the Protein Nano-Object Integrator (ProNOI) which allows for

generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited

number of objects can be created and combined with biological macromolecules in Protein Data

Bank (PDB) format file. Once the objects are generated, the users can use sliders to manipulate

their shape, dimension and absolute position. In addition, the software offers the option to charge

the objects with either specified surface or volumetric charge density and to model them with

user-desired dielectric constants. According to the user preference, the biological macromolecule

atoms can be assigned charges and radii according to four different force fields: Amber,

Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are

exported as a position, charge and radius (PQR) file, or if a default dielectric constant

distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE) file.

As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a

robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge

densities and holds the barnase-barstar protein complex in its hand.

Conclusions: The Protein Nano-Object Integrator (ProNOI) is a convenient tool for generating

atomic-style nano shapes in conjunction with biological macromolecule(s). Charges and radii on

the macromolecule atoms and the atoms in the shapes are assigned according to the user’s

preferences allowing various scenarios of modeling. The default output file is in PQR (PQRE)

format which is readable by almost any software available in biophysical field. It can be

downloaded from: http://compbio.clemson.edu/downloadDir/ProNO_integrator.tar.gz

Implementation

http://compbio.clemson.edu/downloadDir/ProNO_integrator.tar.gz

The main body of the GUI was designed using an interface coded in Java which communicates

with a C++ command line program in the background to generate the atomic-style objects. The

program uses the Java Swing libraries for the visual interface design and encapsulates the

BioJava implementation of the Jmol molecular viewer in order to provide the user with a clear

visual representation of their protein(s) and associated nano-objects.

Once the program boots, it allows the user to either insert objects into an entirely empty file or

open up their own PDB/PQR file for editing. If the user loads their own file, an intelligent file-

parser will chop up their file into the appropriate metafiles consisting of the objects detected in

the file via the tagged REMARK 400 headers and the main body of the protein. These files are

contained within the user’s HOME directory inside an appropriately named hidden folder and are

cleaned up upon the program’s exit to conserve the space on the system. The list of parsed

objects is then used to populate the associated code objects and GUI tables, complete with each

of the parameters used to generate the objects. Once this initial preprocessing is done, the user is

then able to manipulate each of the objects individually by either changing the size, shape, or

positioning of the object in the space or by changing the atomic properties of the object such as

the atomic radius, dielectric constant, atomic identifiers, or object names. The user can also add

or delete individual objects and track which objects have been modified since the last

compilation of the file by the color-coding of each of the object names in the list: blue for

modified objects, gray for unmodified objects.

A key feature of the ProNOI program is the linking of the GUI controls to the molecular viewer

in order to provide the user with immediate feedback. The sliders for each of the objects are

linked to dynamically generated Jmol commands which construct a skeleton of the object’s

expected location for the regeneration. So, even while the user is moving the sliders for the

object, the object’s new position can be tracked in real-time.

Once the user’s adjustments have been made, the user can regenerate the PDB/PQR file and see

exactly how the modeling configuration has changed. This operation is completed in the

background by a call to the C++ object manipulation tool, which, if the appropriate executable is

not found, will offer the user a helpful file navigation dialog to let them specify exactly where

the program is located. The Java GUI will then process all of the parameters from each of the

objects, sanitizing and validating each parameter in order to avoid harmful scripts executing on

the command line, and then calling the C++ program once for each modified object. The output

from the C++ program results in a single PDB/PQR file for each object which has been prefixed

with a REMARK 400 header and contained in the hidden directory. These files are then

combined with the original data from the PDB file and form a new compiled file in the hidden

directory and loaded into the molecular viewer. These actions also preserve the user’s current

perspective in the protein space which can be very useful for monitoring small changes to the

objects.

The C++ object manipulation tool has several additional features worth mentioning. Atomic radii

and charges can now be appended to each atom if the user selects the PQR file format for the

output. The atomic radii of the object are simply entered into the GUI and passed through but the

charges per atom are calculated via a density argument. The C++ program allows surface and

volume density parameters to be passed into it in units of electron charge per Angstrom squared

for surface charge density or per Angstrom cubed for volumetric charge density options. The

charge per atom is then calculated by the following formulae:

 𝑞𝑉 = 𝑑(
𝑞

Å3) ∙ 𝑉 𝑞𝐴 = 𝑑(
𝑞

Å2) ∙ 𝐴 (1a)

 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
𝜋 𝑟3 𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 4𝜋 𝑟2 (1b)

 𝑉𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝜋 𝑟2|𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ | 𝐴𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 2𝜋 𝑟2 + 2𝜋 𝑟|𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ | (1c)

 𝑉𝐶𝑜𝑛𝑒 =
1

3
𝜋 𝑟2ℎ 𝐴𝐶𝑜𝑛𝑒 = 𝜋 𝑟(𝑟 + √𝑟2 + |𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ |

2
) (1d)

 𝑉𝐵𝑜𝑥 = |𝑎 × �⃗� × 𝑐 | 𝐴𝐵𝑜𝑥 = 2[|𝑎 × �⃗� | + |𝑎⃗⃗ ⃗ × 𝑐 | + |𝑏⃗⃗ ⃗ × 𝑐 |] (1e)

where qv and qA are the charges of each atom, d is the given charge density with its units in

parentheses as the charge of the electron per Angstroms squared or cubed, r is the radius of the

object from the input, 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ is the direction vector also from the input, 𝑎 and �⃗� and 𝑐 are the input

vectors for the box, and V is the volume and A is the area of the specified object. This is then

appended to each atom of the object along with the given radius in conformance to the PQR file

format.

In addition to the object manipulation tools, a force field parameters selector has been added to

allow the user to convert their original macromolecule PDB data into PQR format in

conformance with a set of parameter files. The current force field parameters used by this

program are Amber (v. 98), Charmm (v.22), OPLS and PARSE along with an option in the

preferences to upload a properly formatted size (SIZ) and charge (CRG) file-set for a custom

force field parameters. The custom force field parameter option is specifically useful for cases

involving non-standard compounds, for which the charges and radii must be obtained with other

programs, as for example with the antechamber. This selector, upon object generation, scans the

macromolecule PDB file for ATOM entries and attempts to find the residue and atom names and

then find the corresponding radius and charge for the atom from the data read in from the force

field parameter files. If the specific residue name is not found, the program will then try to find

the atom name in the global id list and pull the charge and radius from there. If it is still

unsuccessful, the program will record the error and set the atom’s radius to one and its charge to

zero. Once all the entries have been processed and if any errors resulting from missing entries

have been recorded, a window will appear displaying each of the missing entries letting the user

know which entries were not found and need to be addressed.

Results:

(a) Modeling four standard geometrical nano-objects along with a protein

(b) Modeling electrostatic potential created by a charged sphere

(c) Clemson Robot holding barnase-barstar complex in its hand.

