
DelPhi v.  5.1  - The New Macromolecular Electrostatics Modeling   

Package

 

DelPhi  v.5.1 is  the  new version  of  the  well-known  and  widely  used  DelPhi  software 

package. This manual describes the main features of the old program, as well as the new features. 

Whenever possible, we have preserved compatibility with previous versions of DelPhi. People who 

are used to older versions of DelPhi should not encounter any difficulties in this one. DelPhi v.5.1 

is  a  software  package  that  calculates  electrostatic  potentials  in  and around macromolecules  or 

geometrical objects. It can solve the non-linear and linear forms of the Poisson Boltzmann equation 

using finite difference methods on a GSZxGSZxGSZ cubical lattice. The user can specify the size 

of the ion exclusion (or Stern) layer around the molecule and a variable probe radius to define the 

solvent  accessible  surface.  Different  objects  and molecules (or a  combination of them) can be 

specified using their own dielectric constant. Various boundary conditions such as periodic and 

focusing can be used to model different systems like long periodic molecules or cell membranes. 

The output from the program can be used to calculate  molecular interactions,  changes in pKa, 

solvation energies and many other properties of interest.

Authors:

Delphi is maintained and developed by Delphi team:

email: delphi@clemson.edu

https://mail.clemson.edu/webmail/src/compose.php?send_to=delphi@clemson.edu


References:

−
The following references should be quoted if the use of the DelPhi v.5.1 results to a publication.

In particular references 1,2 describe some of the new features introduced in DelPhi v.5.1.

− Li  L,  Li  C, Sarkar S,  Zhang J,  Witham S, Zhang Z,  Wang L,  Smith N, Petukh M, 
Alexov  E.  "DelPhi:  a  comprehensive  suite  for  DelPhi  software  and  associated 
resources." BMC, Biophys, (2012) May14;4(1):9.

− Smith  N,  Witham  S,  Sarkar  S,  Zhang  J,  Li  L,  Li  C,  Alexov  E.
"DelPhi  Web  Server  v2:  Incorporating  atomic-style  geometrical  figures  into
the computational protocol", Bioinformatics. 2012 Apr 23.

− Rocchia,  W.;  Alexov,  E.;  Honig,  B.  "Extending  the  applicability  of  the  nonlinear 
Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions" J Phys. 
Chem. B 105, 6507-6514 (2001) (pdf)

− W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig "Rapid 
Grid-based Construction of the Molecular Surface for both Molecules and Geometric 
Objects:  Applications to the Finite Difference Poisson-Boltzmann Method"  J. Comp.  
Chem. 23, 128-137,2002

Additional references:

- Klapper, I., Hagstrom, R., Fine, R., Sharp, K., Honig, B. (1986). Focusing of electric 
fields in the active site of Cu-Zn Superoxide Dismutase: Effects of ionic strength and 
amino-acid modification. Proteins 1, p 47.

- K.A. Sharp, M.K.Gilson, R.M.Fine and B.H. Honig. (1987). Electrostatic interactions in 
proteins. UCLA Symposium on Molecular and Cell Biology, Vol 69: Protein Structure, 
Folding and Design, Ed. D.L. Oxender, p235.

- Gilson, M., Sharp, K., Honig, B. Calculating electrostatic interactions in bio-molecules: 
Method and error assessment. J. Computational Chem. 9, pp327-335.

- Gilson, M., Honig, B. Total Electrostatic Energy of a Protein. Proteins, 4, p7 (1988).
- B.  Jayaram,  K.A.Sharp  and  B.H.Honig.  The  electrostatic  potential  of  B-DNA. 

Biopolymers, 28, p975 (1989).
- K.  Sharp,  and  B.  Honig.  Lattice  Models  of  Electrostatic  Interactions:  The  Finite 

Difference Poisson-Boltzmann Method. Chemica Scripta, 29A:71 (1989) 
- K.  Sharp,  and  B.  Honig.  Electrostatic  Interactions  in  Macromolecules:  Theory  and 

Applications. Ann. Rev. Biophys. Chem. 19:301-32 (1990). 

The original reference to the use of the finite difference method for macromolecular electrostatics 
is:

file:///root/JPCRocchia.pdf


- J. Warwicker and H.C. Watson, J. Mol. Biol., 157, p671 (1982). 



Table of Contents

1. INTRODUCTION

2. INSTALLATION

3. BASIC TUTORIAL

4. STATEMENTS AND FUNCTIONS

4.1 Syntax

4.2 Shorthand and Longhand Statements

4.3 Functions in detail

4.4 Index of Statements

5. FILES

6. NEW FEATURES IN DELPHI V.5.1

1. INTRODUCTION

DelPhi v.5.1 takes as input a Brookhaven database coordinate file format of a molecule or 

equivalent data for geometrical objects and/or charge distributions and calculates the electrostatic 

potential  in and around the system, using a finite difference solution to the Poisson-Boltzmann 

equation. This can be done for any given concentration of any two different salts. The system can 

be composed of different parts having different dielectrics.

Return to TOC

2. INSTALLATION

DelPhi v.5.1 is distributed in four versions: 



IRIX version, compiled under IRIX 6.5 Operating System, 32bits, using f77 and cc compilers.

IRIX version, compiled under IRIX 6.5 Operating System, 64bits, using f77 and cc compilers.

LINUX version, compiled under Red Hat 7.1, kernel 2.4.2 Operating System, using Portland Group 

Fortran and C compilers,

PC version, compiled under Windows Operating System, using Microsoft Developer Studio C++ 

and Fortran compilers.

Their way of working is very similar; however, unexpected differences may appear due to different 

numerical  precision or to the porting of the software to different architectures;  for example,  at 

present, the elapsed time in the PC version is not calculated.

Each  distribution  contains  one  executable,  named  delphi  or  delphi.exe,  the  source  codes  with 

corresponding makefile when needed, and some worked examples.

Return to TOC

3. BASIC TUTORIAL

This section provides an overview of using DelPhi in an energy calculation. A quick introduction is 

given in the first section, and then details are given in the sections that follow.

Briefly, running DelPhi v.5.1 consists of the following steps:

Prepare run parameters file (named fort.10 or [namefile].prm )

If at least one molecule is going to be introduced then prepare at least three more files containing: 



Several  sets  of  sample  parameter  files  are  provided  with  the  distribution,  so  it  is  not 

necessary to generate them from scratch. These include PARSE, CHARMM and Amber charge and 

radii files. They all are developed for Brookhaven protein databank (pdb) files with hydrogens. 

Thus, for successful modeling, the input pdb file should be protonated prior to running DelPhi. If 

the accuracy of the calculations is not crucial,  then using the unprotonated pdb file is possible, 

using the proper charge (crg) and radii (siz) files. Importantly, the names of the atoms and residues 

should be consistent between the pdb, crg and siz files.

In the simplest case, DelPhi is applied to a single molecule in a pdb file. To do this, the pdb 

file can be renamed to fort.13 in the directory where DelPhi will be run, or the following line can 

be added to the run parameters (prm) file:

in(pdb,file="[namefile].pdb")

Likewise, the crg, siz, and other parameter files should be set up in a similar manner. This will be 

discussed in more detail in Statement and Functions.

After the input and the parameter files have been properly set up, DelPhi can be run from 

the command line. For instance if one wants to use the parameter file "test.prm" as the parameter 

file one types: 

       delphi test.prm

Typing only:

       delphi

defaults to fort.10. Any additional parameters after test.prm are ignored.

Run the program DELPHI in batch or interactively directing the output to unit 6 (standard 

output) or into a log file, if necessary. Example:

Default convention Alternative convention
Atom coordinates fort.13 [namefile].pdb
Atomic radii fort.11 [namefile].siz
Atomic charges fort.12 [namefile].crg
Site coordinates (optional) fort.15 [namefile].frc



delphi > out.log

Analyze the results. The primary output file from the program is a three dimensional array 

of potentials calculated at the lattice points. This is a large file (grid size )3 and is written in binary 

to save space and time. Much more information from the run can be extracted and saved in suitable 

files. Delphi prints out the grid energy, reaction field energy, coulombic interaction energy. These 

energies can be used for variety of biophysical applications. 

As an option, the site coordinates (frc) file can be provided in order to collect the potential 

and electrostatic field components at specific positions. It has the same format as a pdb file. The 

calculated potential and the components of electrostatic field will be reported at the positions of 

atoms given in the frc file. (Warning – do not charge the atoms specified in frc file).

The most important file is the parameter file. It contains the parameters that control the run 

and output files. Lines within the parameter file can be either Statement and Functions.

This  manual  will  describe  meaning  and  structure  of  the  Statements  and  Functions, 

together  with  a  description  of  input/output  file  naming  and  format,  energy  calculation,  and  a 

description of the new features available in DelPhi v.5.1. We also offer various advices on choosing 

parameters and using DelPhi.

Note:  Older versions of the program provided utilities for file format conversion together with 

specific flags for output format. Unfortunately, not all these options have been tested and updated 

in the new version. However, most of them are expected to work properly, at least if the input is a 

single molecule with only one dielectric constant.

OVERALL PROGRAM FLOW:

• Header with time and date is written.

• Parameters are read from fort.10 or prm file and echoed to output.



• Radius data read from fort.11 or siz file and stored in hash table for efficient look 

up.

• Charge data read from fort.12 or crg file and stored in hash table for efficient look 

up.

• Atomic coordinates are read from fort.13 or pdb file and scaling is computed. In 

accordance with charge and size files, radius and charge are assigned to each atom. 

Distribution of dielectric values, ionic strength  parameters and charge values over 

the lattice are determined from the coordinate/charge/radius data files.

• Arrays that describe 3D distribution of dielectric and ion accessibility in space are 

initialized.

• Atom file with charge and radii records are outputted to fort.19 if requested.

• Centres  of  +  and -  charge  distributions,  and  net  charge  calculated  for  check on 

charge distribution.

• Arrays are set up for the difference eqn. iteration.

• Boundary values are set, either through analytical expressions or interpolated from 

the potential map read from fort.18.

• Linear then non-linear iterative relaxations are done and convergence histories are 

printed out as simple log/lin line plots, if requested.

• Potentials are converted to concentrations if requested.



• Potentials and fields are calculated at the coordinates of the atoms read from fort.15, 

and outputted to fort.16 if requested.

• Grid of potentials outputted to fort.14, if requested.

• Energy contributions and overall surface induced polarization charge are printed out.

• The dielectric map is outputted to fort.17, if requested.

Return to TOC

4. Statements and Functions

DelPhi  v.5.1 uses  a  command  interpreter  that  allows  commands  to  be  used  in  the 

parameter  file.  The  concept  of  the  command  in  DelPhi  comes  in  two  forms,  statements  and 

functions.

Statements have the form: 

       variable-name=value

e.g. 

       Scale=2.0 

       grid size=65

       pbx=t

Functions have the form: 

       operation(specifier,file="xxx.yyy",format="abc")

e.g. 

       in(pdb,file="lys.pdb")



       out(phi,unit=20,format=2)

       center(file="test.pdb")

Statements simply set values or flags. 

Functions  tell  DelPhi  to  perform an  immediate  operation  using  the  specifiers  in  the 

function as parameters for the operation.

Return to TOC

4.1 Syntax

In general,  statements and functions can each be placed on a new line. Since this is the 

clearest way to organize statements, functions and comments, this is what we would recommend. 

However, several statements and functions can be placed on the same line, separated by commas 

",", vertical bars "|" or colons ":". Comments can also be included on the same line as functions or 

statements. These are set apart by surrounding them with a pair of exclamation points "!". If  a 

comment extends to the end of the line, then only a single exclamation point "!" is necessary. 

Spaces and capitalization are ignored only if they appear outside of quotation marks. A very long 

line can be split into two lines using the backslash "\". This is illustrated in the following examples:

scale=2.0, gridsize=65, center (file="mid.pdb")

in(pdb,file="lys.pdb") !this is a comment at the end of a line

In(pdb,file="Lys.pdb") !this line reads the file Lys.pdb, not lys.pdb

Scale=1.5 !this is a comment surrounded by two statements! probe radius=1.4

Note that in the last example, both scale and probe radius will be set by DelPhi. Please be careful 

with the slightly unconventional use of the comment. 

We have tried to anticipate some input errors and to inform the user of them, but the 

hardest part of every complex program is error handling. At the moment DelPhi will only pipe back 

to you what it doesn't understand and continue on with the program. If DelPhi does not understand 

a command, it will attempt to use a default value and continue running anyway. Therefore, it would 

be worthwhile to pay attention to syntax to avoid running an unintended calculation.



Return to TOC

4.2 Shorthand and Longhand Statements

Many statements have abbreviated names. These may come in various forms from three 

to six letters long. Although longer descriptions are easier to read, the shorter forms are easier to 

type and as such they may be less prone to typing error. They are a matter of taste. A complete 

listing of abbreviations and full names appears in the Index of Statements. 

Yes, No, Maybe:

When setting logical values the following are case insensitive and equivalent: 

       yes, on, true, t

       no, off, false, f

Return to TOC

4.3 Functions in detail:

The present set of allowed functions is: 

       CENTER

       ACENTER

       READ/IN (Equivalent)

       WRITE/OUT (Equivalent)

       ENERGY

       BUFFZ

       SITE

       QINCLUDE

       INSOBJ (new!)



We shall cover these one by one since they vary somewhat more in format than statements. But 

first, some of the common features: 

       Function(file="test.file) 

will open the file test.file, whether for centering, output or input. 

       Function(unit=14)

will do the same but with fort.14 or whatever is linked to it. 

       Function(format=abc)

will perform operations on files with a particular format, or in a specified way. The default format 

is always zero (i.e. "0"). The format can be a number or a string. Users are advised not to change 

the format and to use the default settings. 

Center

   Center(0.2,3,2)

will offset the molecule by 0.2 grid units in the x direction, 3 in the y and 2 in the z. Center was 

created as a function to allow the following possibility:

   Center(unit=15)

This opens fort.15 (usually called frc file), reads its atoms and centers the current calculation using 

the geometrical center of the atoms in the file. 

An alias for opening fort.15 and take is center as the system center is Center(999,0,0).

To read just the first atom of a file and use its coordinates use the following, 

Center(file="whatever",an=1) 

Center(999,999,0) is an equivalent of Center(unit=15,an=1)

Note that an=1 is a string and that an=n is not going to take the n-th atom position as the center.

Other  aliases  are  :  Center(777,0,0)  for  Center(unit=27)  and  Center(777,777,0)  for 

Center(unit=27,an=1)

This function is used to specify the offset (expressed in grid units) with respect to the lattice center 

at which the center of the molecule [pmid(3)] is placed. This will influence what point in the real 



space (expressed in Angstroms) is placed at the center of the grid [oldmid(3)]. The relationship 

between real  space  r(i) and grid  g(i) coordinates  for  a  grid  size  of  igrid,  with  a  scale  of  gpa 

grids/angstrom is as follows:

The centre of the grid is :

midg = (igrid+1)/2

oldmid(i) = pmid(i) - OFFSET(i)/gpa

g(i) = (r(i) - pmid(i))*gpa + midg + OFFSET(i)

r(i) = (g(i) - midg)/gpa + oldmid(3)

The scale, the system center and the shift are printed in the logfile.

Note that a certain error inevitably results from the mapping of the molecule onto the grid. By 

moving the molecule slightly (changing CENTER offset between 0,0,0 and 1,1,1) and repeating the 

calculations, it is possible to see whether the results are sensitive to the particular position on the 

grid,  and  if  so,  to  improve  the  accuracy  by  averaging  (this  is  related  to  rotational  averaging, 

discussed in the J. Comp Chem paper of Gilson et al.). However using a larger scale is a more 

effective way of improving accuracy than averaging.

Acenter

Acenter takes three absolute coordinates, i.e. in Å and uses those as the center, so:

    Acenter(1.0,5.6,7.0)

centers the molecule at x=1.0Å, y=5.6Å, z=7.0Å.

Read/In

This function allows files to be read as input. It comes with several specifiers, namely: 

       SIZ: for the radius file



       CRG: for the charge file

       PDB: for the pdb structure file (possible alternative formats: frm=UN and frm=MOD)

       MODPDB4: for the modified pdb structure file (possible alternative formats: frm=PQR and frm=MOD) which 

contain charges and radii values with 4 digits precession after decimal points.

       FRC: for positions of site potentials.

       PHI: for the phimap used in focusing

The main use, at present will be to give the user flexibility to specify the file name or unit number 

of any of these files. Note that the default files for all read (and write) operations are the standard 

DelPhi files. 

Example: 

       in(modpdb4, file="test.mod",format=mod)

Read a mod file called "test.mod", which contains charge and radius value in 4 digits after decimal

       in(modpdb4, file="test.pqr",format=pqr)

Read a pqr file called "test.pqr", which contains charge and radius value in 4 digits after decimal. 

Using this option, delphi can directly read PQR files which are generated by other programs (such 

like pdb2pqr program).

      in(frc,file="namefile")

opens the file "namefile" and logically assigns to it the unit 15 (see Files for details)

Write/Out

Equally obviously this deals with output. The specifiers are: 

       PHI : for phimaps (possible other formats: frm=BIOSYM, frm=GRASP, frm=CUBE; see Unit14 in Files)

       FRC : for site potentials (possible other formats: frm=RC, frm=R, frm=UN;)

       EPS : for epsmaps

       MODPDB: for modified pdb files

       MODPDB4: modified pdb files that contain charges and radii with 4 digits precession after decimal points



UNPDB: for unformatted pdb file

       UNFRC : for unformatted frc files

       ENERGY: writes the file "energy.dat" containing energy data. (Example: out(energy))

-Note that this is different from the Energy function!

As an example of use, 

       write(eps)

writes an epsmap, to the file fort.17, format described here. 

       out(modpdb, file="test.out")

writes a modified pdb file called "test.out"

       out(modpdb4, file="test.mod",format=mod)

Writes a modified pdb file called "test.mod", which contains charge and radius value in 4 digits 

after decimal

       out(modpdb4, file="test.pqr",format=pqr)

Writes a pqr file called "test.pqr", which contains charge and radius value in 4 digits after decimal

Note that all writes are turned OFF initially, including eps and phi. 

Energy

At present it takes as its argument any of the following: 

       G or GRID for the grid energy,

       S or SOL or SOLVATION for the corrected reaction field energy

       C or COULOMBIC or COU for the coulombic energy

     ION or IONIC or IONIC_C for the direct ionic contribution (see Ionic direct Contribution) 

separated by commas. (As always there is no case sensitivity here.) 



So, for example, 

       energy(s,g,Cou,ion)

gives the solvation, coulombic, grid energies and ionic contribution.

Note that the calculation of the non linear contributions are automatically turned on whenever non-

linear PBE solver is invoked. 

For the energy definition we recommend the Rocchia et al. J. Phys. Chem. paper, however a brief 

explanation is given below:

The  grid energy is obtained from the product of the potential at each point on the grid and the 

charge at that point, summed over all points on the grid. However, the potential computed for each 

charge on the grid includes not only the potentials induced by all other charges, but also the "self" 

potential. The effect is caused by the partitioning of the real charges into the grid points. Thus, two 

neighboring grid points might have partial charges that originate from the same real charge. Since 

the product of a charge with its own potential is not a true physical quantity, the grid energy should 

not  be  taken  as  a  physically  meaningful  number  by  itself.  Instead,  the  grid  energy  is  only 

meaningful when comparing two DelPhi runs with exactly the same grid conditions (e.g constant 

structure and constant scale). The difference can then be used to extract solvation energies, salt 

effects, and others.

The coulombic energy is calculated using Coulomb's law. It is defined as the energy required to 

bring charges from infinite distance to their resting positions within the dielectric specified for the 

molecule. This term has been revised in the new DelPhi to be consistent with the new multiple 

dielectric  model.  For  the  most  recent  definition,  we  again  refer  the  reader  to  the  previously 

mentioned paper.

The  reaction field energy (also called the solvation energy) is obtained from the product of the 

potential due to induced surface charges with all fixed charges of the solute molecule. This includes 

any fixed charge in the molecule that happens to be outside of the grid box. The induced surface 

charges are calculated at each point on the boundary between two dielectrics, e.g. the surface of the 

file:///root/JPCRocchia.pdf


molecule. If the entire molecule lies within the box and salt is absent, this energy is the energy of 

transferring the molecule from a medium equal to the interior dielectric of the molecule into a 

medium of external dielectric of the solution. Depending on the physical process being described, 

this may be the actual solvation energy, but in general the solvation energy is obtained by taking 

the difference in reaction field energies between suitable  reference states -  hence we make the 

distinction between this physical process and our calculated energy term.

For other Energy contributions, see here. 

Site

SITE(argument)

Reports the potentials and electrostatic field components at the positions of the subset of atoms 

specified in the frc file. The atoms specified in frc file should not be charged in the delphi run.

The argument is a list of identifiers that can be:

Atom or A

Charge or Q

Potential or P

Field or F

Reaction or R

Coulomb or C

Coordinates or X

Salt or I

Total or T

Examples: 

SITE(atom,potentials)

Site(a,p) – specifies what printed to frc file (see above).



Buffz

Defines a box with sides parallel to grid unit vectors that the reaction field energy will then be 

calculated using ONLY the polarization charges contained in that box.

The fixed format is BUFFZ(6i3).

Example: 

BUFFZ(001002003004005006) will fill a matrix:

Bufz(1,1)=1 distance in grid units from the negative x side

Bufz(2,1)=2 distance in grid units from the negative y side

Bufz(3,1)=3 distance in grid units from the negative z side

Bufz(1,2)=4 distance in grid units from the positive x side

Bufz(2,2)=5 distance in grid units from the positive y side

Bufz(3,2)=6 distance in grid units from the positive z side

Qinclude

The qinclude function is a feature that has not been tested in the latest versions of DelPhi, so it may 

behave a bit differently from expected. It works in the same way as an include statement works in 

FORTRAN or C, i.e., it inserts lines from another file into the current one. For instance, suppose 

we have the following files: 

test.prm:

       scale=3.0, write(frc),write(modpdb,file="test.out")

       acenter(0.123,4.55,2.34)

test2.prm:

       boundary type=2, read(pdb,file="test.pdb")

then the file: 

       scale=3.0, write(frc),write(modpdb,file="test.out")



       qinclude(test2.prm)

       acenter(0.123,4.55,2.34)

is equivalent to: 

       scale=3.0, write(frc),write(modpdb,file="test.out")

       boundary type=2, read(pdb,file="test.pdb")

       acenter(0.123,4.55,2.34)

or one could even write: 

       qinclude(test1.prm)

       qinclude(test2.prm)

Clearly the motivation behind this form is to allow the user to create his/her own default file and 

qinclude this file at the beginning of subsequent parameter file. One then needs only a  qinclude 

statement plus and lines indicating those parameters that need to be changed from the default file. 

Note that  qinclude is immediate, i.e. it includes the lines from the indicated file at the position of 

the qinclude command. This is important to remember that if you define a quantity multiple times, 

then only the last instance is used. In other words, a file containing

       scale=2.0

       scale=3.0

tells  DelPhi to  set  the  scale  to  3  grids/Å.  This  is  the  reason  we include  a  write(specifier,off) 

command.  If  you  have  a  default  file  which  enables a  write,  you  can  still  turn  it  off  without 

modifying the default file. 

Can a qinclude file contain a qinclude file? But of course. At present one can nest qinclude files up 

to  ten deep.  If  a qinclude file does not exist  DelPhi will  tell  you so and move on to  the next 

command. If there is no file passed to qinclude, i.e. 

       qinclude()

then, if it exists, the default include file ~/qpref.prm is passed. Qinclude is a special command and 

as such always requires its own line, i.e. do NOT add more commands to a line which start with a 

qinclude command (not even comments). 



INSOBJ

This function is somehow different from the others in the sense that it doesn't have any argument, if 

it is written in a line of a prm file, it launches the routine that allows the user to insert objects, 

charge distributions etc. (see description)

Return to TOC

4.4 Index of Statements and their shorthand

Statement Long Form Short 2L abr Default Value

AUTOCON

AUTOCONVERGENCE

AUTOMATICCONVERGENCE

AUTOC AC TRUE

BOUNDARYCONDITION

BOUNDARYCONDITIONS
BNDCON BC 2(=DIPOLAR)

BOXFILL

PERCENTFILL

PERCENTBOXFILL

PERFIL PF 80

CHEBIT CHEBIT CI FALSE

CLCSRF CLCSRF CS FALSE

CONVERGENCEFRACTION CONFRA CF 1

CONVERGENCEINTERVAL CONINT CI 10

EXITUNIFORMDIELECTRIC EXITUN XU FALSE

EXTERIORDIELECTRIC

EXTERNALDIELECTRIC
EXDI ED 80

FANCYCHARGE

SPHERICALCHARGEDISTRIBUTION
FCRG FC FALSE

GRIDCONVERGENCE GRDCON GC 0.0

GRIDSIZE GSIZE GS AUTOMATIC

INTERIORDIELECTRIC INDI ID 2.0



IONICSTRENGTH

SALTCONC

SALTCONCENTRATION

SALT IS 0.0

IONRADIUS IONRAD IR 0.0/2.0

ITERATION

ITERATIONS

LINEARITERATION

LINIT LI AUTOMATIC

LOGFILECONVERGENCE LOGGRP LG FALSE

LOGFILEPOTENTIALS LOGPOT LP FALSE

MAXC   (new!)  MAXC XC 0.

MEMBRANEDATA NOT USED MD FALSE

NONLINEARITERATION

NONLINEARITERATIONS
NONIT NI 0

PERIODICBOUNDARYX PBX PX FALSE

PERIODICBOUNDARYY PBY PY FALSE

PERIODICBOUNDARYZ PBZ PZ FALSE

PHICON PHICON FALSE

PROBERADIUS PRBRAD PR 1.4

RADPLOEXT (new!) RADPOL RL 1.

RADPR2 (new!) RADPR2 R2 PRBRAD

RELAXATIONFACTOR RELFAC RF 0.9975

RELPAR (new!) RELPAR RR 1.

RMSC (new!) RMSC MC 0.

SALT2 (new!) SALT2 S2 0.

SCALE SCALE SC 1.2



SOLVPB SOLVPB SP TRUE

VAL+1 and similar (new!) VAL+1 +1 1

4.5.1 Full list and Statement description

GSIZE: An odd integer number of points per side of the cubic lattice, min=5, max=571 (=NGRID, 

platform dependent). A larger grid size will in general mean a better resolution representation of the 

molecule on the lattice. This will results in more accurate potentials, but will require more time. 

The  number  of  iterations  required  to  reach  a  certain  convergence  will  increase  approximately 

linearly with parameter GS. Since the time per iteration will go up as the cube of this parameter the 

amount of calculation will thus increase at about the fourth power of GS. Example: gsize=65 or gs=65.

SCALE: The reciprocal of one grid spacing (grids/angstrom). Example: scale=1.2 or sc=1.2.

PERFIL: A percentage of the object longest linear dimension to the lattice linear dimension. This 

will affect the scale of the lattice (grids/angstrom). The percentage fill of the lattice will depend on 

the application. A large percentage fill will provide a more detailed mapping of the molecular shape 

onto the lattice. A perfil less than 20% is not usually necessary or advisable. A very large filling 

will bring the dielectric boundary of the molecule closer to the lattice edge. This will cause larger 

errors arising from the boundary potential  estimates,  which are set  to zero or approximated by 

coulombic/Debye-Huckel-type  functions  using  a  uniform  solvent  dielectric.  The  error  will  be 

minimal  for  higher  salt  concentrations  or  weakly  charged  molecules.  Smaller  percentages  will 

increase  the  accuracy of the  boundary conditions,  but  result  in a  coarser  representation of  the 

molecule. Higher resolution can be achieved more efficiently using focusing. 

Example: perfil=40 or pf=40.

NOTES:

If the molecule is not centered in the origin of the coordinate system, the perfil reflects the 

percentage of the system  that is actually contained in the lattice. For example, if the maximum 



dimension of a molecule is 100Å, there is no offset and perfil is 50%, then the box side will be 

200Å; but if there is an offset of 20Å in the maximum dimension direction, then the box side will 

be 280Å. (new!) 

Scale, grid size and perfil are not independent variables so they cannot all be assigned 

simultaneously in a single run. In any quantitative calculation, the largest possible scale should be 

used, preferably greater than 2 grids/angstrom. Without focusing, a perfil of around 50% or 60% is 

reasonable.  For example,  if  scale  is set  to  2 and perfil  is set  to 50,  the grid size is calculated 

automatically given the size of the structure. For larger molecules this could mean a prohibitively 

large memory requirement. In this case a compromise must be found or focusing could be used. 

Regardless of grid scale, calculations should be repeated at different scales to assess the size of 

lattice resolution errors.

A good approach to the calculation could start with a small percentage, say 20%, using 

Debye-Huckel boundary conditions, and then focus in to say 90% or more, in one (or two) stages, 

using focusing boundary conditions for the second (and third) runs.  It  is not necessary for the 

molecule to lie completely within the grid although then the potential boundary conditions must be 

generated by focusing. However when calculating solvation energies with box fills of > 100% 

remember that unexpected results may be obtained since parts of the surface, (and perhaps 

some charges) are not included in the grid. 

INDI: The internal (molecules) dielectric constant. It is used only in single molecule systems for 

compatibility  with  the  old  version.  A  value  of  INDI=1  corresponds  to  a  molecule  with  no 

polarizability- the state assumed in most molecular mechanics applications. INDI=2 represents a 

molecule with only electronic polarizability (i.e. assuming no reorientation of fixed dipoles, peptide 

bonds,  etc).  A  value  of  2  is  based  on  the  experimentally  observed  high  frequency  dielectric 

behavior of essentially  all  organic  materials.  INDI=4-6 represents a  process  where  some small 

reorganization of molecular  dipoles  occurs which is  not represented explicitly  (for  example  in 

modeling the effects of site directed mutagenesis experiments, when the structure of the wild type, 

but not mutant protein is known). According to M.K. Gilson and B. Honig, Biopolymers, 25:2097 

(1986)  for  instance,  materials  having  similar  dipole  density,  dipole moment  and  flexibility  as 



globular  proteins  have  a  dielectric  between  4  and  6.  In  modeling  any  process  where  large 

reorientations of dipoles, or large conformational change occurs, i.e. upon folding or denaturation, 

using a  simple  dielectric  constant  for  the  molecule  would be inappropriate,  and the  change in 

conformation should be modeled explicitly. 

Example: indi=2 or id=2.

EXDI: The external (solution) dielectric constant. A value of EXDI=1 corresponds to the molecule 

in vacuum, EXDI=80 to the molecule in water. Depending on the application runs with EXDI equal 

to  either  of  these  values  may be  used  to  represent  different  states  in  a  thermodynamic  cycle. 

Example: exdi=80 or ed=80.

PRBRAD: A radius (Å) of probe molecule that will define solvent accessible surface in the Lee 

and Richard's sense. In combination with the atomic van der Waals radii in the siz file, PRBRAD 

determines  the  regions  of  space,  and  hence  the  lattice  points,  that  are  inaccessible  to  solvent 

molecules (water). Suggested value is PRBRAD 1.4 for water. To understand how these parameters 

work,  you  should  be  familiar  with  the  concepts  of  contact  and  solvent  accessible  surface,  as 

discussed by Lee and Richards, and by Mike Connolly. For the purpose of DelPhi, any region of 

space that is accessible to any part of a solvent (water) molecule is considered as having a dielectric 

of EXDI. A value of zero for PRBRAD used with a siz file containing the standard van der Waals 

radii values will assign any region of space not inside any atom's van der Waals sphere to the 

solvent. For more details, please refer to Rocchia et al. J. Comp. Chem. paper.

IONRAD:  The  thickness  of  the  ion  exclusion  layer  around  molecule  (Å).  IONRAD,  in 

combination with the atomic van der Waals radii in the siz file, determines the regions of space, 

and hence the lattice points, which are inaccessible to solvent ions. Suggested values is IONRAD = 

2.0 for sodium chloride. For the purpose of DelPhi, a solvent ion is considered as a point charge, 

which can approach no closer than its ionic radius, IONRAD, to any atoms van der Waals surface. 

The ion excluded volume is thus bounded by the contact surface, which is the locus of the ion 

centre when in van der Waals contact with any accessible atom of the molecule. A zero value for 

IONRAD will  just  yield  the  van  der  Waals  surface.  A non zero  value  of  IONRAD will  thus 



introduce a Stern, or ion exclusion layer, around the molecule where the solvent ion concentration 

will be zero and whose dielectric constant is that of the solvent, EXDI. Example: ionrad=2 or ir=2.

SALT: The  concentration of first  kind of salt,(moles/liter).  In  the  case  of a  single  1:1 salt,  it 

coincides with ionic strength. Example: salt=0.14 or is=0.14.

BNDCON: An integer flag specifying the type of boundary condition imposed on the edge of the 

lattice. Example: bndcond=4 or bc=4. Allowed options:

(1) - potential is zero.

(2) – dipolar. The boundary potentials are approximated by the Debye-Huckel potential of 

the equivalent dipole to the molecular charge distribution. Phi is the potential estimated at a given 

lattice boundary point, q+ (q-) is the sum of all positive (negative) charges, and r+(r-) is distance 

from the point to the center of positive (negative) charge, lambda is the Debye length.

ϕ=q+
e
−

r+

λD

ε solv r+
+ q−

e
−

r−
λD

εsolv r−

(3) – focusing.  The potential  map from a previous calculation is read in unit  18, and 

values for the potential at the lattice edge are interpolated from this map- clearly the first map 

should  have  been  generated  with  a  coarser  grid  (greater  distance  between  lattice  points)  and 

positioned such that current lattice lies completely within old lattice or the program will protest. For 

focusing boundary conditions,  the  program reads  in  a  potential  map from a previous run,  and 

compares the  scale  of the focusing map with that  for  the current run.  If  they are  the same,  it 

assumes that this is a continuation of a previous run, and iteration of the potentials contained in the 

previous potential map is continued. If the scale is not the same, it checks to ensure that the new 

lattice lies completely within the old lattice before interpolating the boundary conditions.

(4) – coulombic. They are approximated by the sum of Debye-Huckel potentials of all the 

charges. qi is the i'th charge, and ri is the distance from the lattice boundary point to the charge.

ϕ=∑i
qi

e
−

r i

λ D

ε solv r i



LINIT: An integer number (> 3) of iterations with linear equation. The convergence behavior of 

the finite difference procedure is reported in the log file as both the mean and maximum absolute 

change in potential at the grid points between  successive iterations. The latter is probably more 

important since it puts an upper bound on how much the potential is changing at the grid points. It 

is suggested that sufficient iterations be performed to give a final maximum change of less than 

0.001 kT/e. The number of iterations per se is not important, as long as its sufficient to give the 

required convergence. The convergence behavior can also be judged from the slope of the semi-log 

plot of the mean and max changes given in the log file. LINIT is best determined by experience, 

since  the  convergence  rate  depends on several  factors.  Start  with  say  100 iterations,  and  then 

increase the number of iterations until sufficient. Note that a run can be restarted by using focusing 

boundary conditions with exactly the same SCALE, PERFIL and ACENTER values (see note 5). 

Some guidelines are: The number of iterations needed will increase with grid size (GSIZE). It will 

decrease with decreasing PERFIL, since the potentials converge more rapidly in the solvent. It will 

decrease with increasing ionic strength. The number is fairly insensitive to the size and number of 

charges on the molecule. Example: linit=400 or li=400.

NONIT: An integer number (> = 0) of non-linear iterations. If linear PB equation only is required, 

NONIT is set to be 0. Example: nonit=400 or ni=400.

FCRG:  A flag,  normally set  to  false  indicating a linear cubic  interpolation of charges to  grid 

points; set to true this turns on a spherical  charge interpolation.  If an atomic charge does not lie 

exactly on a grid point, then it must somehow be distributed onto the grid points. If this flag is set 

false, the standard algorithm is used which distributes a charge to the nearest 8 grid points (quick 

and simple, see the Proteins paper of Klapper et al.). If this flag is set true, then an algorithm is used 

which gives a more spherically symmetric charge distribution, although the charge is now spread 

over a wider region of space. For certain cases this gives higher accuracy for potentials less than 3 

grid units from a charge (see Gilson et al. J.Comp. Chem paper), although this point has not been 

exhaustively explored.

LOGPOT: A flag that activates the potential listing during the run. 

Example: logpot=t or lp=t or logfilepotentials=t.



LOGGRP: A flag that activates the convergence plot during the run. 

Example: loggrp=t or logfileconvergence=t or lg=t.

CONINT: A flag that determines at what iteration interval convergence is checked, by default it 

equals  10.(usually  not  modified  from  default)  The  idea  behind  this  parameter  is  to  allow 

convergence to be checked less frequently to reduce the amount of time spent. Example: conint=10 

or ci=10 or convergenceinterval=10. 

CONFRA: A flag that determines the convergence fraction. Iit decides what fraction of grid points 

are used in assessing convergence (1=all, 2=half, 5=fifth etc). By default it equals 1 (usually not 

modified from default). Example: confra=10 or cf=1 or convergencefraction=1. 

PBX,PBY,PBZ: They are the three logical flags (t/f) for periodic boundary conditions for the x,y,z 

edges  of  the  lattice  respectively.  Note  that  periodic  boundary  conditions  will  override  other 

boundary conditions on edges to  which they are  applied.  Periodic  boundary conditions can be 

applied in one or more of the x, y or z directions. When applied, the potential at each periodic 

lattice boundary point is iterated by supplying its missing neighbor(s) from the corresponding point 

on the opposite edge of the lattice. This can be used for example to model an infinite length of 

DNA. Assume that the helical axis of the DNA in the pdb file is aligned along the Z axis. The 

periodic boundary flags are set to false, false, true, and the percent fill  of the box, PERFIL, is 

adjusted so that an integral number of turns just fill the box in the Z direction. Normal boundary 

conditions are applied to the X,Y boundaries. By setting two, or three of the boundary flags to true, 

one can simulate 2 dimensional or 3 dimensional cubic lattices of molecules. Example: pbx=t or px=t 

or periodicboundaryx=t. 

AUTOC: A flag for automatic convergence. The program by default will automatically calculate 

the  number of iterations needed to  attain  convergence.  It  is automatically  set  if  no number of 

iteration  is  specified  otherwise.  See  also  LINIT  and  GC  options  Example:  autoc=t  or 

automaticconvergence=t or autoconvergence=t or autocon=t or ac=t.



EXITUN:  A flag  to  terminate  the  program if  uniform dielectric  is  present  (INDI=EXDI).  By 

default it is false. (usually not modified) Example: exitun=f or exituniformdielectric=f or xu=f. 

GRDCON:  The value  for  grid  convergence.  When set,  the  criterion used to  stop the  iterative 

process is the difference on values of grid energy, this option might slow down the calculation a bit, 

but provides a very strong criterion. Example: grdcon=0.001 or gc=0.001 or gridconvergence=0.001.

RELFAC: The externally assigned value for spectral radius (define spectral radius). (usually not 

modified from default) Example: relfac=0.9975 or relaxationfactor=0.9975 or rf=0.9975

CHEBIT: A flag, that if it is true the relaxation parameter for linear convergence process is set 

equal to 1. (usually not modified from default) Example: chebit=t or ci=t .

SOLVPB: A flag, which controls the Poisson-Boltzmann solver. Normally DelPhi will invoke the 

Poisson-Boltzmann  solver  but  if  you  are  interested  in  using  DelPhi  for  other  things  such  as 

calculating surface area or producing a GRASP viewable surface file, you can turn off the solver 

using this option. Example: solvpb=t or sp=t.

CLCSRF:  A flag,  that  when set  to  true,  outputs  a  GRASP viewable  surface  file  in the  name 

grasp.srf. Example: clcsrf=t or cs=t.

PHICON: A flag, that maps charge density in a .phi file, with a procedure that is equivalent to the 

one  that  saves  the  potential  map.  phicon=f  produces  standard  potential  output  in  kT/e 

(approximately equal to 25.6 mV at 25oC, or to 0.593 kcal/mole of charge). phicon=t will give net 

solvent  ion  concentration  output  in  M/l,  where  for  every  lattice  point  inside  the  molecule  the 

concentration  is  0,  and  the  outside  concentration  is  obtained  from:  (-ionic 

strength*2*sinh(potential)) or its linearized version if linear PBE is used. Example: phicon=t.

RADPOLEXT: A default  radius for  point charges  in a  continuum (only in  objects)  (see  self-

reaction field energy), Example: radpolext=1 or radpol=1 or rl=1



RELPAR: A manually assigned value for relaxation parameter in non-linear iteration convergence 

process. (see non-linear equation convergence) Example: relpar=0.8 or rr=0.8

SALT2:  The  concentration of second salt  (if  present)  expressed in Moles/liters.  (see  multi-salt 

option) Example: salt2=0.2 or s2=0.2

RADPR2: The value for effective probe radius relative to the part of the molecule which is internal 

to an object. (see  geometric objects) (This option is still  under testing on Jan 2002)  Example: 

radpr2=2 or r2=2.

VAL+1: (VAL-1 VAL+2 VAL-2) A number > 0, valence of positive (negative) ion constituting 

salt one (two). (see multi-salt option) Example: val+1=1 or +1=1.

RMSC: The  convergence threshold value based on root mean square change of potential.  (see 

convergence hints) Example rmsc=0.0001 or mc=0.0001

MAXC: The convergence threshold value based on maximum change of potential (suggested). (see 

convergence hints) Example maxc=0.0001 or xc=0.0001

Return to TOC

5. FILES

Many files are used to input and output data. Each type of data or output has its own file. The 

default name for the unit [number] file is fort.[number]. Here follows a description and format 

for each of them.

INPUT FILES:



UNIT 10

Default extension prm. Contains input parameters. See the section on Statements and Functions for 

full details.

A sample parameter file

UNIT 11

Default extension siz. List describing the van der Waals radii to be assigned to each atom/residue 

pdb record type. A sample file is provided together with the code. Note the atom and residue fields 

ignore case and leading blanks. The residue field may be left blank (wild card), causing a match 

with the given atom type of any residue. ONLY if the residue field is left blank,  the LAST 5 

characters of the atom record may be left blank. In this case all atom types beginning with the letter 

in  column 1 will  be  matched.  Records of  greater  specificity  override  those  of  less  specificity. 

Beware of ambiguities like calcium (ca) and alpha carbon! All atoms of an input pdb file must be 

assigned a radius through the siz file, even if it is 0, or the output will be flagged with a warning.

UNIT 12

Default extension crg. List of  the atomic charges to be assigned to each atom/residue/number/chain 

pdb record type. A sample file is provided together with the code. The ascii fields for atom, residue, 

number and chain ignore case and leading blanks. Any field except the atom name may be left 

blank and will be treated as a wild card. Records of greater specificity override those of lesser 

specificity as for the siz file above. 

search order: 

        atom_res_num_chain

        atom_res_num______

        atom_res_____chain

        atom_res__________

        atom_____num_chain



        atom_____num______

        atom_________chain

        atom______________

Atoms that do not find a match in the crg file will be neutral (q=0.0) 

file must have a line: atom__resnumbc_charge_

Examples:

A line as shown below will charge only the N atom of ALA residues.

N     ALA      -0.400

A line as show below will charge all N atoms.

N                   -0.400

Note that position of text phases and numbers is strictly determined and can’t be changed!

UNIT 13

A Brookhaven protein data bank standard format file containing atom labels and coordinates, or a 

modified OBJECTFILE. Only records starting with ATOM or HETATM are read; if objects or 

multi-dielectric option are used, also the keywords MEDIA, OBJECT, CRGDST, DATA are also 

read. The routine insobj fills the corresponding records with the correct charges and dielectrics. The 

default  extension  is  pdb.  The  precise  format  is  essential;  using  Fortran  syntax, 

(6A1,I5,1X,A4,A1,A3,1X,A1,I4,A1,3X,3F8.3,2F6.2,1X,I3) is used for the atom record. From left 

to  right,  the  fields  contain 'ATOM--'  or  'HETATM' atom serial  number,  atom name,  alternate 

location indicator, residue name, chain identifier, residue sequence number, residue insertion code, 

x, y, and z coordinates, occupancy, temperature factor, footnote number. Note that the program 

treats the residue number as an ascii string, not as an integer. As a warning to the user, there are 

many variations, and even outright errors found in the format of pdb files obtained from the web. It 

would be wise to double-check the contents of a file to save any heartache.



UNIT 15

Default extension: pdb or frc. List of coordinates where site potentials are output in Unit 16. Format 

as for Unit 13.

UNIT 18

Default  extension  phi,  potential  map  for  focusing  boundary  conditions.  Potentials  are  in  kT/e 

(25.6mV, 0.593 kcal/mole/charge at 25°C). 

The  format  of the file  is  given below in case that  the  user  wants to  adopt  the file  to  its  own 

software. If the users wants to visualize the file with Grasp or Insight, no action should be taken. 

               unformatted (binary file)

               character*20 uplbl

               character*10 nxtlbl,character*60 toplbl

               real*4 phi(65,65,65)

               character*16 botlbl

               real*4 scale,oldmid(3)

uplbl, nxtlbl, toplbl, botlbl are ascii information. Phi is the 3D array containing values of potential 

for all the lattice points. Index order is  x,y,z. Scale is lattice scale in  grid/Å. Oldmid is the x,y,z 

coordinates in real space (angstroms) of the centre of the lattice: thus the real space coordinates 

x,y,z of the lattice point for phi(IX,IY,IZ), for the case where IGRID = 65, are: 

               x = (IX - 33)/scale + oldmid(1)

               y = (IY - 33)/scale + oldmid(2)

               z = (IZ - 33)/scale + oldmid(3)

where 33 = (65+1)/2 is the middle point of the grid. 

OUTPUT FILES:

UNIT 6

Output  from  the  program,  including  error  messages  and  convergence  history.  When  run 

interactively, appears on standard output. Default extension log when run in batch 



UNIT 14

If the flag IBIOS (BIOSYM) is false, then output is in DELPHI format, default extension phi. The 

output can be either a potential map or a concentration map, with format same as for unit 18 above. 

The output phi map has the same scale as used in the calculation (i.e, variable) unless format=grasp is 

specified. The grasp-style phi map format will always interpolate to a 65 x 65 x 65 grid for use in 

Grasp (or other hardwired display/analysis programs).

If the flag IBIOS (BIOSYM) is true, then output is in INSIGHT format, default extension ins. This 

is an unformatted (binary) file. As it was explained above, the format is provided only for 

completeness in case that one wants to visualize the file with different than Insight software.

             character*132  toplbl    !ascii header
             integer*4  ivary         !0  =>  x  index  varys  most rapidly
             integer*4 nbyte          !=4, # of bytes in data
             integer*4 inddat         !=0, floating point data
             real*4 xang,yang,zang    !=90,90,90 unit cell angles
             integer*4 intx,inty,intz !=igrid-1, # of intervals/grid side
             real*4 extent            !maximum extent of grid
             real*4 xstart,xend       !beginning, end of grid sides
             real*4 ystart,yend       !in fractional
             real*4 zstart,zend       !units of extent
             write(14)toplbl
             write(14)ivary, nbyte, intdat, extent, extent, extent,
             xang, yang, zang, xstart, xend, ystart,  yend,  zstart,
                  zend, intx, inty, intz
             do k = 1,igrid
                 do j = 1,igrid
                    write(14)(phimap(i,j,k),i=1,igrid)
                 end do
             end do

Note that for grid sizes less than 65, INSIGHT format files will occupy less disk space than the 

corresponding DELPHI files. ins files are designed as input to a Biosym Corp. stand alone utility 

called CONTOUR, supplied with INSIGHT Version 2.4. This program will produce contour files 

for display with INSIGHT. 33

If the flag CUBE is true, then output is in CUBE format (Gaussian Cube). Example: 

Out(phi,file=’phimap.txt’,form=’cube’) – this command creates file ’phimap.txt’ in the cube-format.

There is a source code for saving in the ‘cube-format’.



            write(6,*)' Potential map in cube format '
            write(6,*)'written to file',filnam
            write(14,*)'qdiffxs4 with an improved surfacing routine'
            write(14,*) 'Gaussian cube format phimap'
            coeff=0.5291772108
            stepsize=1.0/scale
            do i=1,3
            origin(i)=oldmid(i)-stepsize*(igrid-1)/2/coeff
            enddo
            write(14,'(i5,3f12.6)') 1, (origin(i),i=1,3)
            write(14,'(i5,3f12.6)') igrid, stepsize/coeff,0.0,0.0
            write(14,'(i5,3f12.6)') igrid, 0.0,stepsize/coeff,0.0
            write(14,'(i5,3f12.6)') igrid, 0.0,0.0,stepsize/coeff
            write(14,'(i5,4f12.6)') 1,0.0,0.0,0.0,0.0
            do i = 1,igrid
            do j = 1,igrid
            write(14,'(6E13.5)')(phimap(i,j,k),k=1,igrid)
            end do
            end do

UNIT 16

Default extension frc. A list of potentials and fields at coordinates in pdb file read on unit 15. 

Format: 12 lines of ascii header information, followed by a variable number of records written as: 

               230     format(8G10.3)

                       write(16,230)xo,chrgv,phiv,fx,fy,fz

where xo(3) are x ,y ,z coordinates of charge, chrgv is the charge value, phiv is the potential (in  

kT/e) at that point, and fx, fy, fz are the field components (in kT/e/Å ). The last line of the file is the 

sum of chrgv*phiv/2 over all the charges in the file. This quantity can be used for calculating 

solvation and interaction energies. 

UNIT 17

Dielectric  bit  map,  default  extension:  eps.  If  grid  size=65,  there  are  3*65*65*65  lines joining 

neighboring grid points, 65*65*65 each in of the x,y,z directions. The midpoint of each line is given 

a value of 1 if it lies within the solvent accessible volume of the system, 0 if outside. This defines 



the shape of the molecule and separates the space into different dielectric regions. The format of the 

output files is described below in case that the user wants to build own software to visualize the 

map. For compact output purposes the array of INTEGER*4, epsmap(65,65,65,3), is compressed 

into an INTEGER*2 array, neps(5,65,65), by bit-mapping: the first index of epsmap, range 1-65 is 

compressed into the first index of neps, range 1-5, where the indices 1-16 go into bits 0-15 of the 

word with index 1, indices 17-32 -> bits 0-15 of word with index 2 etc. The array neps is then 

written to an unformatted binary file: 

               write (17) imap, scale, oldmid

               write (17) neps

where imap is an unused integer*4 flag and scale, oldmid(3) are real*4 scaling information as 

above. 

Note  (new!)  in the case that the solute is composed of more than one dielectric media, in this 

release (v.5.1 up to rel. 1.1) the  additional information is not included in the fort.17, in order to 

maintain compatibility with software packages that take it as an input.

UNIT 19

If the "modified pdb file" option is activated in a WRITE/OUT function, a logical flag (t/f), iatout, 

will be set to true and will produce a modified PDB file written on unit 19, containing the:

radius  and  charge  assigned  to  each  atom written  after  the  coordinates,  in  the  fields  used  for 

occupancy and B factor. It is recommended that this option be set initially so that the user can 

check that all the radius and charge assignments are correct. An additional check on the charge 

assignment can be made by looking at the total charge written to the log file.

Return to TOC

6. New Features In DelPhi v.5.1



Here below are described some of the new features that have been introduced to DelPhi v.5.1:

1. MULTI-DIELECTRIC CODE  

2. GEOMETRIC OBJECTS  

3. GEOMETRIC-SHAPED CHARGE DISTRIBUTIONS  

4. NON-LINEAR PBE SOLVING ROUTINE  

5. MULTI-SALT CODE  

6. ENERGY PARTITIONING  

1. MULTI-DIELECTRIC CODE  

Earlier versions of DelPhi handle a scenario where a single molecule is immersed in a 

solution. In other words, only a "two-media" world was considered. In the present version, a system 

with many different objects having different dielectric constant can be modeled. These objects can 

be either sets of atoms obtained from a pdb file or geometric objects.

Special attention has been paid to maintain compatibility with older versions of DelPhi, so 

the new program can be used in much the same way as before. On the other hand, the user can also 

take advantage of the new possibilities and build the desired scenario by including in the parameter 

file the function insobj. This function guides the user through the insertion of molecules, objects 

and charge distributions. Once a suitable scenario is constructed, the result is saved to fort.13. The 

construction phase  does not need to  be repeated unless the user wishes to  change the inserted 

objects.

Note: In order to gain better accuracy for reaction field energy, the location of polarization charges 

is  normally  projected onto the  molecular  surface.  If  a  molecule  is  immersed in an  object,  the 

molecular  surface  would be  built  inside  the  object.  If   two molecules with different  dielectric 

constants come in contact or overlap, the molecular surface at their interface is not built. (In fact, it 

doesn't  make  sense  to  do  so  in  that  case.)  Instead,  the  polarization  charges  are  not  projected 

anywhere but are left at their own grid point locations.



Return to new features

2 GEOMETRIC OBJECTS  

A complete description of a molecule is not always the most convenient way to represent it; this 

could  be  because  a  detailed  calculation  is  too  computationally  expensive,  or  because  the  user 

prefers  a  simpler,  schematic  description  of  a  system  for  computing  semi-quantitative  results. 

Therefore  we  added  to  DelPhi  a  new way  to  insert  geometrical  dielectric  objects  and  charge 

distributions of simple geometrical shapes. The user can now insert various dielectric objects of 

different types, where a molecule is just one of the possible choices. In order to accomplish this, a 

set of data structures has been built that contains: 

•) an ordinal number, that labels the object.

•) a field that contains the dielectric constant of the medium constituting the object.

•) an integer called "objectype" that tells if the object is a molecule (0), a sphere (1), a 

cylinder (2), a cone (3) or a box (4).

•) the parameters related to its dimension and position, which are:

for a molecule : name of the .pdb file,

for a sphere (a): center C (described by coordinates x, y, z) and radius, R. Example: 

0.0,0.0,0.0,5 for a sphere centered in the origin and having a radius of 5Å.

for  a  cylinder (b):  centers  of  the  two  bases  (A  and  B)  and  radius.  Example: 

0.0,0.0,0.0,0.0,0.0,1.0,10.0  for  a  cylinder  where  A=(0,0,0),  B=(0,0,1)  and 

R=10Å.

for a cone (c): center of the base A, vertex B, opening angle (in degrees). Example: 

0,0,0,0,0,1,30 for a cone where A=(0,0,0), B=(0,0,1) and angle=30º.

for a box (d): four adjacent vertices disposed as the origin and the three vectors of a 

right-handed  vector  basis  (x,  y  and  z,  respectively).  Example: 

0,0,0,1,0,0,0,2,0,0,0,3  for  a  box  where  A=(0,0,0),B=(1,0,0),C=(0,2,0)  and 

D=(0,0,3).





There  is  also  the  possibility  to  create  more  complex  shapes:  if  two  objects  turn  out  to  be 

overlapping, the overlapping region will have the dielectric constant of the object assigned later. In 

fact,  the dielectric constant of the last assigned object overrides the dielectric constant of all 

the objects assigned beforehand. Exploiting this fact, the user can build unions or intersections of 

the mentioned objects, each of them having the desired dielectric constant, ending up with a more 

complex scenario.

As a rule, all molecules superimpose on the other objects regardless of the order in which they 

have been inserted.

We are currently testing the possibility of using a different probe radius to build the molecular 

surface (MS) on the part of any molecule that is buried within an object. This value is assigned 

through the radpr2=[value] statement. By default, it is set equal to the "regular" probe radius.



The insobj keyword, when placed in the parameter file, tells the program to start a routine that asks 

for the set  of molecules,  objects and charge distributions that composes the system. When this 

statement is executed, DelPhi V.5.1 creates the file fort.13 with a special internal format for multi-

dielectrics and objects.  The user should not use the function in(pdb,file="namefile.pdb") in the 

same parameter file as insobj. To perform multiple calculations on fort.13 using the same scenario, 

insobj can be commented out of the parameter file. Since the scenario has been saved, this avoids 

having to rebuild the same scenario for each calculation.

At present, boundary conditions cannot be computed for a grid that contains an object that is not 

completely immersed in the cube. If the user is interested to such a system, he must start with a low 

percentage filling (e.g. 50% or 60%) where the usual boundary conditions are sufficient. Then he 

must increase the perfil until it gets higher than 100% using the focusing method.

Return to new features

3 GEOMETRIC-SHAPED CHARGE DISTRIBUTIONS  

In the new DelPhi v.5.1 program, various types of uniform charge distributions can be inserted and 

the user can specify if these belong to an object or not. This is really useful when we are dealing 

with a charge very close to an interface between different dielectric media and we want to be sure 

the program assigns the right dielectric to it.

The charge distributions that have been taken into consideration may have the same overall 

shapes of the objects plus some other additional ones.

In fact, the data structure is built to contain:

•) an ordinal number, that labels the distribution,

•) a field that tells if the distribution is within the volume or only onto the surface,

•) a field that tells if the distribution is "free" or belongs to one of the previously inserted 

objects, if it is free, the medium where it is located is decided based on epsilon map 

(grid discretized), if it is “linked” to some object, its medium will be the one of the 

object (see note below). This is useful for charges close to the boundary between 

different media to avoid erroneous assignments,



•) a field which contains the total charge amount,

•) a number called "distrtype" that tells if the shape is spherical (1), cylindrical (2), conic  

(3), box-shaped (4), point charge (8), linear (9), disk-shaped (10), rectangular (11),

•)  the  parameters  related  to  its  dimension  and  position,  which  are  the  same  as 

corresponding objects if "distrtype" is less or equal to 4, and:

the point (x,y,z) coordinates for number 8, Ex.: 1,0,0 for the point (1,0,0)

the two extremes A and B for number 9, Ex.: 0,0,0,1,0,0 for A(0,0,0) and B(1,0,0)

the  disk  center  and three  points  disposed as  the  three  vectors  of  a  right-handed 

vector basis (x, y and z, respectively), and the disk radius for  number 10, 

Ex.: 0,0,0,1,0,0,0,1,0,0,0,1,5 for a disk lying on the x-y plane, centered in 

(0,0,0), and having radius R=5Å.

three adjacent vertices disposed as the origin and the two vectors of a right-handed 

two dimensional vector basis (x and y, respectively), for  number 11. Ex.: 

0,0,0,1,0,0,0,1,0  for  a  rectangle  having  the  following  vertices: 

A(0,0,0),B(1,0,0),C(0,1,0),D(1,1,0)

The same routine activated by the statement insobj takes care of charge distribution assignment.

Note:  the  distinction  between  “free”  and  “bound”  or  “linked”  charge  is  a  consequence  of 

discretization.  Because of it,  a  charge  can be assigned in a  location where there is  a  different 

medium from the one where the charge was originally set to be. If the user knows which is the 

medium embedding the charge, then he should link the charge to the correct object, otherwise, the 

charge will be classified as “free”.

Return to new features

4. NON-LINEAR PBE SOLVING ROUTINE  

An algorithm has been implemented that  can solve the non-linear PBE, as described in 

Rocchia et. al. Journal of Physical Chemistry B paper. A good relaxation parameter must be used 

for  fast  and  reliable  convergence  of  the  non-linear  equation.  A heuristic  algorithm is  used  to 

file:///../walter/delphi/ManualeNuovo/JPCRocchia.pdf


estimate it; nonetheless, for some particularly pathological conditions, it is possible that the choice 

is not optimal and that the convergence is very slow or even absent.

In  order  to  deal  also  with  those  systems,  the  new statement  relpar=[value] can  be  put  in  the 

parameter file to manually assign the relaxation parameter.

A general set of guidelines to the choice of the relaxation parameter follows:

The optimal relaxation parameter for a non-linear system generally turns out to be less than 1. 

Pathological conditions like a very high charge in proximity to the surface, ionic strength close to 

zero but not null and some particular scale  values, can require a parameter much lower, down to 

0.001 or even lower. On the other hand, a too low value has the drawback of slowing down the 

convergence and, in the worst case, to give only an illusion of convergence. Thus, the advice is to 

start with an intermediate value and to decrease it until the convergence is reached.

Convergence hints again:

The hardest part for the convergence process is at the beginning, when the non-linearity of the 

equation is slowly added. In this phase the relaxation parameter could be quite low, and thus can 

hinder  the  continuation  of  the  convergence  process.  This  is  the  rationale  behind  the  heuristic 

algorithm.

A  good  convergence  is  characterized  by  a  low  max  change  in  the  potential  together  with  a 

relaxation parameter not too close to zero, say greater than 0.1 or similar. If the convergence is 

absent or not satisfying, the user can decide to use a fixed, but suitably tuned, relpar which should 

be as high as possible, provided it allows for convergence.

Two  more  statements  have  been  added,  that  are  valid  for  both  linear  and  non  linear  cases: 

rmsc=potential root mean square change threshold,[kT/e] and maxc= potential maximum change 

threshold, [kT/e] that allows two new convergence criteria. The first concerns the rms change and 

the second the maximum change of grid potential between successive iterations. The second one is 

of particular interest because it sets an upper bound on the error in potential throughout the grid. 

Both criteria can be assigned together with the number of iterations, linit or nonit; the program will 

stop iterating as soon as one of the assigned criteria is satisfied.

Return to new features



5. MULTI-SALT CODE  

Including the effects of salts of different valences makes a large difference when calculating the 

electric field of a solute in solution. Handling multiple valences properly requires using the more 

general  expression  for  the  charge  in  the  original  PBE.  The  ionic  strength  is  then  calculated 

accordingly to its general definition: I=
1

2
∑i

zi
2 Ci

bulk
; the concentration of each ion is related to 

the one of the salt assuming electro-neutrality for each salt, that is: ∑i
z i C i

bulk
=0  for the ions of 

every single salt in solution.

Some new statements have been added to handle this new situation:

salt=[conc first kind of salt, moles/liter], val+1=[valence of positive ion in salt type 1], val-

1=[valence of negative ion in salt type 1];

salt2=[conc second kind of salt, moles/liter], val+2=[valence of positive ion in salt type 2], 

val-2=[valence of negative ion in salt type 2];

Return to new features

6. ENERGY PARTITIONING  

A new partitioning of the energy is considered and described in details in the article of the Journal 

of Physical Chemistry B paper. Accordingly, the electrostatic energy is subdivided into: coulombic,  

reaction  field,  self-reaction  field,  external  ion  contribution,  osmotic  pressure  term,  "rho*phi" 

(electrostatic stress). The last three terms only appear when the ionic strength is greater than zero. 

The last two terms cancel out in the linear PB equation.

Coulombic and reaction field energies are calculated using Coulomb's law and Gauss's theorem 

as described in the J. Phys. Chem. paper.

file:///../walter/delphi/ManualeNuovo/JPCRocchia.pdf
file:///../walter/delphi/ManualeNuovo/JPCRocchia.pdf


The osmotic and electrostatic stress terms, defined in the same paper, are calculated whenever 

the program is asked to run nonlinear iterations; their contribution arises from the solvent inside the 

box.

The  calculation  of  the  external  ion  contribution is  toggled  by  the  flag  ion  in  the  energy 

statement, it calculates the direct interaction of ions to real charges.

This direct calculation needs some comments: it calculates the coulombic interaction between the 

ions  in  solution  (screened  by  the  surrounding  polarized  water).  First  of  all,  it  can  be 

computationally expensive, especially if the grid size is very high. Secondly, this energy neglects 

all  of  the  ionic  contribution  due  to  the  ions  located  outside  the  box.  This  can  result  in  a 

underestimation of the real contribution, especially if the percentage filling is high. In the linear 

case this problem has been reduced almost completely by a mixed numerical/analytical technique. 

The  analytical  contribution  of  the  first  term in  a  spherical  expansion  of  the  molecular  system 

outside the box is calculated. So the direct ionic contribution is better estimated by the sum of two 

terms: the one internal to the box and the one external to the box.

For the non-linear case this is not so easy, because an analytical solution of the non-linear PBE for 

the spherical case is not available. The use of the linear approximation routine would result in an 

overestimation of the ionic contribution.

Another way to get an estimation of the same energy term is to subtract the grid and reaction 

field energy in two cases: with and without salt. This means running the program twice on the 

system.

In order to help the user decide if these two runs are necessary, the program estimates and reports 

the  number  of  Debye  lengths  bounded  within  the  grid.  This  number,  together  with  the  ionic 

strength, aids the user in estimating the error due to neglecting the ionic contribution outside the 

box.

Note:  If  periodic boundary conditions are  used, the estimated external ion contribution will be 

taken only in the directions where periodicity is NOT invoked. This is done in order to give an 

estimate of energy per periodic cell.



The  self-reaction  field  energy is  calculated  whenever  the  usual  reaction  field  energy  is 

calculated. It  is an attempt to estimate the energy that the system gains when a point charge is 

moved from vacuum to a dielectric medium. In fact,  when a charge moves from vacuum to a 

dielectric a polarization charge of opposite sign builds up around it. This results in an energetically 

favorable process. The higher the dielectric constant of the medium, the higher is the amount of 

polarization charge and the more energetically favorable is the process. In our model, it is assumed 

that polarization charge builds up spherically around any real point charge, at a distance the user 

can decide via the statement radpolext=[radius], which by default is set to be 1Å. This information 

is no attempt to give a quantitative estimation of this energy but just to take into account in a more 

detailed way the fact that the most favorable place for a charge is within a high dielectric medium. 

This necessity arises when a system with many different dielectric regions is studied.

Return to new features

Return to TOC

Sample parameter file

!example prm file for DelPhi v.5.1

scale=1.5

perfil=80

!insobj

in(pdb,file="ala.pdb")

bndcon=4

indi=2

exdi=80

ionrad=2.0

prbrad=1.4

salt=0.001



!out(frc)

!out(modpdb)

!out(phi)

logfileconvergence=true

logfilepotentials=true

energy(s,g,c,ion)

Return to TOC


	DelPhi v.5.1- The New Macromolecular Electrostatics Modeling Package
	Table of Contents
	1.	INTRODUCTION
	2.	INSTALLATION
	3.	BASIC TUTORIAL
	4.	Statements and Functions
	4.1	Syntax
	4.2	Shorthand and Longhand Statements
	4.3	Functions in detail:

	4.4 Index of Statements and their shorthand
	4.5.1	Full list and Statement description
	5.	FILES
	6.	New Features In DelPhi v.5.1
	Sample parameter file



