
DelPhi v.6- The New Macromolecular Electrostatics Modeling

Package

This manual describes the main features of the old program, as well as the new features. Whenever

possible, we have preserved compatibility with previous versions of DelPhi. People who are used to

older versions of DelPhi should not encounter any difficulties in this one. DelPhi is a software

package that calculates electrostatic potentials in and around macromolecules or geometrical

objects. It can solve the non-linear and linear forms of the Poisson Boltzmann equation using finite

difference methods on a GSZxGSZxGSZ cubical lattice. The user can specify the size of the ion

exclusion (or Stern) layer around the molecule and a variable probe radius to define the solvent

accessible surface. Different objects and molecules (or a combination of them) can be specified

using their own dielectric constant. Various boundary conditions such as periodic and focusing can

be used to model different systems like long periodic molecules or cell membranes. The output

from the program can be used to calculate molecular interactions, changes in pKa, solvation

energies and many other properties of interest.

Authors:

Delphi is maintained and developed by Delphi team:

email: delphi@clemson.edu

https://mail.clemson.edu/webmail/src/compose.php?send_to=delphi%40clemson.edu

References:

The following references should be quoted if the use of the DelPhi v.6 results to a publication.

In particular, reference 1 describes some of the new features introduced in DelPhi v.6 and

references 2 and 3 describe the implementations of parallel conmputing in parallel DelPhi V.6.

- L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, L. Wang, N. Smith, M. Petukh,

E. Alexov, “DelPhi: a comprehensive suite for DelPhi software and associated

resources”, BMC, Biophys, (2012) May 14; 4(1):9.

- Smith N, Witham S, Sarkar S, Zhang J, Li L, Li C, Alexov E. "DelPhi Web Server v2:

Incorporating atomic-style geometrical figures into the computational protocol",

Bioinformatics. 2012 Apr 23.

- L. Li, C. Li, Z. Zhang, E. Alexov, “On the Dielectric Constant of Proteins: Smooth

Dielectric Function for Macromolecular Modeling and its Implementation in DelPhi”, J.

Chem, Theory Comput. 2013 Apr 9; 9(4): 2126-2136.

- C. Li, L. Li, J. Zhang, E. Alexov, “Highly efficient and exact method for parallelization

of grid-based algorithms and its implementation in DelPhi”, J. Comput Chem, 2012 Sep

15: 33(24): 1960-1966.

- C. Li, M. Petukh, L. Li, E. Alexov, “Continuous Development of Schemes for Parallel

Computing of the Electrostatics in Biological Systems: Implementation in DelPhi”, J

comput chem (2013), Article first published online: 3 JUN 2013 DOI:

10.1002/jcc.23340.

- Rocchia, W.; Alexov, E.; Honig, B. "Extending the applicability of the nonlinear

Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions" J Phys.

Chem. B 105, 6507-6514 (2001) (pdf)

- W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig
"Rapid Grid-based Construction of the Molecular Surface for both Molecules
and Geometric Objects: Applications to the Finite Difference Poisson-Boltzmann
Method" J. Comp. Chem. 23, 128-137,2002

Additional references:

- Klapper, I., Hagstrom, R., Fine, R., Sharp, K., Honig, B. (1986). Focusing of electric

fields in the active site of Cu-Zn Superoxide Dismutase: Effects of ionic strength and

amino-acid modification. Proteins 1, p 47.

- K.A. Sharp, M.K.Gilson, R.M.Fine and B.H. Honig. (1987). Electrostatic interactions in

proteins. UCLA Symposium on Molecular and Cell Biology, Vol 69: Protein Structure,

Folding and Design, Ed. D.L. Oxender, p235.

- Gilson, M., Sharp, K., Honig, B. Calculating electrostatic interactions in bio-molecules:

Method and error assessment. J. Computational Chem. 9, pp327-335.

- Gilson, M., Honig, B. Total Electrostatic Energy of a Protein. Proteins, 4, p7 (1988).

JPCRocchia.pdf

- B. Jayaram, K.A.Sharp and B.H.Honig. The electrostatic potential of B-DNA.

Biopolymers, 28, p975 (1989).

- K. Sharp, and B. Honig. Lattice Models of Electrostatic Interactions: The Finite

Difference Poisson-Boltzmann Method. Chemica Scripta, 29A:71 (1989)

- K. Sharp, and B. Honig. Electrostatic Interactions in Macromolecules: Theory and

Applications. Ann. Rev. Biophys. Chem. 19:301-32 (1990).

The original reference to the use of the finite difference method for macromolecular electrostatics

is:

- J. Warwicker and H.C. Watson, J. Mol. Biol., 157, p671 (1982).

Table of Contents

1. INTRODUCTION

2. INSTALLATION

3. BASIC TUTORIAL

4. STATEMENTS AND FUNCTIONS

4.1 Syntax

4.2 Shorthand and Longhand Statements

4.3 Functions in detail

4.4 Index of Statements

5. FILES

6. OTHER FEATURES IN DELPHI V.6

1. INTRODUCTION

DelPhi takes as input a Brookhaven database coordinate file format of a molecule or

equivalent data for geometrical objects and/or charge distributions and calculates the electrostatic

potential in and around the system, using a finite difference solution to the Poisson-Boltzmann

equation. This can be done for any given concentration of any two different salts. The system can

be composed of different parts having different dielectrics.

Return to TOC

2. INSTALLATION

DelPhi v.6 is distributed in four versions:

IRIX version, compiled under IRIX 6.5 Operating System, 32bits, using f77 and cc compilers.

IRIX version, compiled under IRIX 6.5 Operating System, 64bits, using f77 and cc compilers.

LINUX version, compiled under Red Hat 7.1, kernel 2.4.2 Operating System, using GNU gfortran

compilers,

PC version, compiled under Windows Operating System, using Microsoft Developer Studio C++

and Fortran compilers.

Their way of working is very similar; however, unexpected differences may appear due to different

numerical precision or to the porting of the software to different architectures; for example, at

present, the elapsed time in the PC version is not calculated.

Each distribution contains one executable, named delphi or delphi.exe, the source codes with

corresponding makefile when needed, and some worked examples.

Return to TOC

3. BASIC TUTORIAL

This section provides an overview of using DelPhi in an energy calculation. A quick introduction is

given in the first section, and then details are given in the sections that follow.

Briefly, running DelPhi 1 consists of the following steps:

Prepare run parameters file (named fort.10 or [namefile].prm)

If at least one molecule is going to be introduced then prepare at least three more files containing:

Several sets of sample parameter files are provided with the distribution, so it is not

necessary to generate them from scratch. These include PARSE, CHARMM and Amber charge and

radii files. They all are developed for Brookhaven protein databank (pdb) files with hydrogens.

Thus, for successful modeling, the input pdb file should be protonated prior to running DelPhi. If

the accuracy of the calculations is not crucial, then using the unprotonated pdb file is possible,

using the proper charge (crg) and radii (siz) files. Importantly, the names of the atoms and residues

should be consistent between the pdb, crg and siz files.

In the simplest case, DelPhi is applied to a single molecule in a pdb file. To do this, the pdb

file can be renamed to fort.13 in the directory where DelPhi will be run, or the following line can

be added to the run parameters (prm) file:

 in(pdb,file="[namefile].pdb")

Likewise, the crg, siz, and other parameter files should be set up in a similar manner. This will be

discussed in more detail in Statement and Functions.

 After the input and the parameter files have been properly set up, DelPhi can be run from

the command line. For instance if one wants to use the parameter file "test.prm" as the

parameter file one types:

 delphi test.prm

Typing only:

 delphi

 Default convention Alternative convention

Atom coordinates fort.13 [namefile].pdb

Atomic radii fort.11 [namefile].siz

Atomic charges fort.12 [namefile].crg

Site coordinates (optional) fort.15 [namefile].frc

defaults to fort.10. Any additional parameters after test.prm are ignored.

 Run the program DELPHI in batch or interactively directing the output to unit 6 (standard

output) or into a log file, if necessary. Example:

 delphi > out.log

 Analyze the results. The primary output file from the program is a three dimensional array

of potentials calculated at the lattice points. This is a large file (grid size)
3
 and is written in binary

to save space and time. Much more information from the run can be extracted and saved in suitable

files. Delphi prints out the grid energy, reaction field energy, coulombic interaction energy. These

energies can be used for variety of biophysical applications.

 As an option, the site coordinates (frc) file can be provided in order to collect the potential

and electrostatic field components at specific positions. It has the same format as a pdb file. The

calculated potential and the components of electrostatic field will be reported at the positions of

atoms given in the frc file. (Warning – do not charge the atoms specified in frc file).

The most important file is the parameter file. It contains the parameters that control the run

and output files. Lines within the parameter file can be either Statement or Functions.

 This manual will describe meaning and structure of the Statements and Functions,

together with a description of input/output file naming and format, energy calculation, and a

description of the new features available in DelPhi v.6. We also offer various advices on choosing

parameters and using DelPhi.

Note: Older versions of the program provided utilities for file format conversion together with

specific flags for output format. Unfortunately, not all these options have been tested and updated

in the new version. However, most of them are expected to work properly, at least if the input is a

single molecule with only one dielectric constant.

OVERALL PROGRAM FLOW:

 Header with time and date is written.

 Parameters are read from fort.10 or prm file and echoed to output.

 Radius data read from fort.11 or siz file and stored in hash table for efficient look

up.

 Charge data read from fort.12 or crg file and stored in hash table for efficient look

up.

 Atomic coordinates are read from fort.13 or pdb file and scaling is computed. In

accordance with charge and size files, radius and charge are assigned to each atom.

Distribution of dielectric values, ionic strength parameters and charge values over

the lattice are determined from the coordinate/charge/radius data files.

 Arrays that describe 3D distribution of dielectric and ion accessibility in space are

initialized.

 Atom file with charge and radii records are outputted to fort.19 if requested.

 Centres of + and - charge distributions, and net charge calculated for check on

charge distribution.

 Arrays are set up for the difference eqn. iteration.

 Boundary values are set, either through analytical expressions or interpolated from

the potential map read from fort.18.

 Linear then non-linear iterative relaxations are done and convergence histories are

printed out as simple log/lin line plots, if requested.

 Potentials are converted to concentrations if requested.

 Potentials and fields are calculated at the coordinates of the atoms read from fort.15,

and outputted to fort.16 if requested.

 Grid of potentials outputted to fort.14, if requested.

 Energy contributions and overall surface induced polarization charge are printed out.

 The dielectric map is outputted to fort.17, if requested.

Return to TOC

4. Statements and Functions

 DelPhi uses a command interpreter that allows commands to be used in the parameter file.

The concept of the command in DelPhi comes in two forms, statements and functions.

Statements have the form:

 variable-name=value

e.g.

 Scale=2.0

 grid size=65

 pbx=t

Functions have the form:

 operation(specifier,file="xxx.yyy",format="abc")

e.g.

 in(pdb,file="lys.pdb")

 out(phi,unit=20,format=2)

 center(file="test.pdb")

 Statements simply set values or flags.

 Functions tell DelPhi to perform an immediate operation using the specifiers in the

function as parameters for the operation.

Return to TOC

4.1 Syntax

In general, statements and functions can each be placed on a new line. Since this is the

clearest way to organize statements, functions and comments, this is what we would recommend.

However, several statements and functions can be placed on the same line, separated by commas

",", vertical bars "|" or colons ":". Comments can also be included on the same line as functions or

statements. These are set apart by surrounding them with a pair of exclamation points "!". If a

comment extends to the end of the line, then only a single exclamation point "!" is necessary.

Spaces and capitalization are ignored only if they appear outside of quotation marks. A very long

line can be split into two lines using the backslash "\". This is illustrated in the following examples:

 scale=2.0, gridsize=65, center (file="mid.pdb")

 in(pdb,file="lys.pdb") !this is a comment at the end of a line

 In(pdb,file="Lys.pdb") !this line reads the file Lys.pdb, not lys.pdb

 Scale=1.5 !this is a comment surrounded by two statements! probe

radius=1.4

Note that in the last example, both scale and probe radius will be set by DelPhi. Please be careful

with the slightly unconventional use of the comment.

 We have tried to anticipate some input errors and to inform the user of them, but the

hardest part of every complex program is error handling. At the moment DelPhi will only pipe back

to you what it doesn't understand and continue on with the program. If DelPhi does not understand

a command, it will attempt to use a default value and continue running anyway. Therefore, it would

be worthwhile to pay attention to syntax to avoid running an unintended calculation.

Return to TOC

4.2 Shorthand and Longhand Statements

 Many statements have abbreviated names. These may come in various forms from three

to six letters long. Although longer descriptions are easier to read, the shorter forms are easier to

type and as such they may be less prone to typing error. They are a matter of taste. A complete

listing of abbreviations and full names appears in the Index of Statements.

Yes, No, Maybe:

When setting logical values the following are case insensitive and equivalent:

 yes, on, true, t

 no, off, false, f

Return to TOC

4.3 Functions in detail:

The present set of allowed functions is:

 CENTER

 ACENTER

 READ/IN (Equivalent)

 WRITE/OUT (Equivalent)

 ENERGY

 BUFFZ

 SITE

 QINCLUDE

We shall cover these one by one since they vary somewhat more in format than statements. But

first, some of the common features:

 Function(file="test.file)

will open the file test.file, whether for centering, output or input.

 Function(unit=14)

will do the same but with fort.14 or whatever is linked to it.

 Function(format=abc)

will perform operations on files with a particular format, or in a specified way. The default format

is always zero (i.e. "0"). The format can be a number or a string. Users are advised not to change

the format and to use the default settings.

Center

 Center(0.2,3,2)

will offset the molecule by 0.2 grid units in the x direction, 3 in the y and 2 in the z. Center was

created as a function to allow the following possibility:

 Center(unit=15)

This opens fort.15 (usually called frc file), reads its atoms and centers the current calculation

using the geometrical center of the atoms in the file.

An alias for opening fort.15 and take is center as the system center is Center(999,0,0).

To read just the first atom of a file and use its coordinates use the following,

Center(file="whatever",an=1)

Center(999,999,0) is an equivalent of Center(unit=15,an=1)

Note that an=1 is a string and that an=n is not going to take the n-th atom position as the center.

Other aliases are : Center(777,0,0) for Center(unit=27) and Center(777,777,0) for

Center(unit=27,an=1)

This function is used to specify the offset (expressed in grid units) with respect to the lattice center

at which the center of the molecule [pmid(3)] is placed. This will influence what point in the real

space (expressed in Angstroms) is placed at the center of the grid [oldmid(3)]. The relationship

between real space r(i) and grid g(i) coordinates for a grid size of igrid, with a scale of gpa

grids/angstrom is as follows:

The centre of the grid is:

midg = (igrid+1)/2

oldmid(i) = pmid(i) - OFFSET(i)/gpa

g(i) = (r(i) - pmid(i))*gpa + midg + OFFSET(i)

r(i) = (g(i) - midg)/gpa + oldmid(3)

The scale, the system center and the shift are printed in the logfile.

Note that a certain error inevitably results from the mapping of the molecule onto the grid. By

moving the molecule slightly (changing CENTER offset between 0,0,0 and 1,1,1) and repeating the

calculations, it is possible to see whether the results are sensitive to the particular position on the

grid, and if so, to improve the accuracy by averaging (this is related to rotational averaging,

discussed in the J. Comp Chem paper of Gilson et al.). However using a larger scale is a more

effective way of improving accuracy than averaging.

Acenter

Acenter takes three absolute coordinates, i.e. in Å and uses those as the center, so:

 Acenter(1.0,5.6,7.0)

centers the grid box at x=1.0Å, y=5.6Å, z=7.0Å.

Read/In

This function allows files to be read as input. It comes with several specifiers, namely:

 SIZ: for the radius file

 CRG: for the charge file

 PDB: for the pdb structure file (possible alternative formats: frm=UN and

frm=MOD)

 MODPDB4: for the modified pdb structure file (possible alternative

formats: frm=PQR and frm=MOD) which contain charges and radii values with 4

digits precession after decimal points.

 FRC: for positions of site potentials.

 PHI: for the phimap used in focusing

The main use, at present will be to give the user flexibility to specify the file name or unit number

of any of these files. Note that the default files for all read (and write) operations are the standard

DelPhi files.

Example:

 in(modpdb4, file="test.mod",format=mod)

Read a mod file called "test.mod", which contains charge and radius value in 4 digits after decimal

 in(modpdb4, file="test.pqr",format=pqr)

Read a pqr file called "test.pqr", which contains charge and radius value in 4 digits after decimal.

Using this option, delphi can directly read PQR files which are generated by other programs (such

like pdb2pqr program).

 in(frc,file="namefile")

opens the file "namefile" and logically assigns to it the unit 15 (see Files for details)

Write/Out

Equally obviously this deals with output. The specifiers are:

 PHI : for phimaps (possible other formats: frm=BIOSYM, frm=GRASP,

frm=CUBE; see Unit14 in Files)

 FRC : for site potentials (possible other formats: frm=RC, frm=R,

frm=UN;)

 EPS : for epsmaps

 MODPDB: for modified pdb files

 MODPDB4: modified pdb files that contain charges and radii with 4 digits

precession after decimal points

 UNPDB: for unformatted pdb file

 UNFRC : for unformatted frc files

 ENERGY: writes the file "energy.dat" containing energy data. (Example:

out(energy))

-Note that this is different from the Energy function!

As an example of use,

 write(eps)

writes an epsmap, to the file fort.17, format described here.

 out(modpdb, file="test.out")

writes a modified pdb file called "test.out"

 out(modpdb4, file="test.mod",format=mod)

Writes a modified pdb file called "test.mod", which contains charge and radius value in 4 digits

after decimal

 out(modpdb4, file="test.pqr",format=pqr)

Writes a pqr file called "test.pqr", which contains charge and radius value in 4 digits after decimal

Note that all writes are turned OFF initially, including eps and phi.

Energy

At present it takes as its argument any of the following:

 G or GRID for the grid energy,

 S or SOL or SOLVATION for the corrected reaction field energy

 C or COULOMBIC or COU for the coulombic energy

 ION or IONIC or IONIC_C for the direct ionic contribution (see Ionic direct

Contribution)

separated by commas. (As always there is no case sensitivity here.)

So, for example,

 energy(s,g,Cou,ion)

gives the solvation, coulombic, grid energies and ionic contribution.

Note that the calculation of the non linear contributions are automatically turned on whenever non-

linear PBE solver is invoked.

For the energy definition we recommend the Rocchia et al. J. Phys. Chem, however a brief

explanation is given below:

The grid energy is obtained from the product of the potential at each point on the grid and the

charge at that point, summed over all points on the grid. However, the potential computed for each

charge on the grid includes not only the potentials induced by all other charges, but also the "self"

potential. The effect is caused by the partitioning of the real charges into the grid points. Thus, two

neighboring grid points might have partial charges that originate from the same real charge. Since

the product of a charge with its own potential is not a true physical quantity, the grid energy should

not be taken as a physically meaningful number by itself. Instead, the grid energy is only

meaningful when comparing two DelPhi runs with exactly the same grid conditions (e.g constant

structure and constant scale). The difference can then be used to extract solvation energies, salt

effects, and others.

The coulombic energy is calculated using Coulomb's law. It is defined as the energy required to

bring charges from infinite distance to their resting positions within the dielectric specified for the

molecule. This term has been revised in the new DelPhi to be consistent with the new multiple

dielectric model. For the most recent definition, we again refer the reader to the previously

mentioned paper.

The reaction field energy (also called the solvation energy) is obtained from the product of the

potential due to induced surface charges with all fixed charges of the solute molecule. This includes

any fixed charge in the molecule that happens to be outside of the grid box. The induced surface

charges are calculated at each point on the boundary between two dielectrics, e.g. the surface of the

molecule. If the entire molecule lies within the box and salt is absent, this energy is the energy of

transferring the molecule from a medium equal to the interior dielectric of the molecule into a

medium of external dielectric of the solution. Depending on the physical process being described,

this may be the actual solvation energy, but in general the solvation energy is obtained by taking

the difference in reaction field energies between suitable reference states - hence we make the

distinction between this physical process and our calculated energy term.

For other Energy contributions, see here.

Site

 SITE(argument)

Reports the potentials and electrostatic field components at the positions of the subset of atoms

specified in the frc file. The atoms specified in frc file should not be charged in the delphi run.

The argument is a list of identifiers that can be:

Atom or A

Charge or Q

Potential or P

Field or F

Reaction or R

Coulomb or C

Coordinates or X

Salt or I

Total or T

Examples:

 SITE(atom,potentials)

 Site(a,p) – specifies what printed to frc file (see above).

Buffz

Defines a box with sides parallel to grid unit vectors that the reaction field energy will then be

calculated using ONLY the polarization charges contained in that box.

The fixed format is BUFFZ(6i3).

Example:

BUFFZ(001002003004005006) will fill a matrix:

Bufz(1,1)=1 distance in grid units from the negative x side

Bufz(2,1)=2 distance in grid units from the negative y side

Bufz(3,1)=3 distance in grid units from the negative z side

Bufz(1,2)=4 distance in grid units from the positive x side

Bufz(2,2)=5 distance in grid units from the positive y side

Bufz(3,2)=6 distance in grid units from the positive z side

Qinclude

The qinclude function is a feature that has not been tested in the latest versions of DelPhi, so it

may behave a bit differently from expected. It works in the same way as an include statement

works in FORTRAN or C, i.e., it inserts lines from another file into the current one. For instance,

suppose we have the following files:

test.prm:

 scale=3.0, write(frc),write(modpdb,file="test.out")

 acenter(0.123,4.55,2.34)

test2.prm:

 boundary type=2, read(pdb,file="test.pdb")

then the file:

 scale=3.0, write(frc),write(modpdb,file="test.out")

 qinclude(test2.prm)

 acenter(0.123,4.55,2.34)

is equivalent to:

 scale=3.0, write(frc),write(modpdb,file="test.out")

 boundary type=2, read(pdb,file="test.pdb")

 acenter(0.123,4.55,2.34)

or one could even write:

 qinclude(test1.prm)

 qinclude(test2.prm)

Clearly the motivation behind this form is to allow the user to create his/her own default file and

qinclude this file at the beginning of subsequent parameter file. One then needs only a qinclude

statement plus and lines indicating those parameters that need to be changed from the default file.

Note that qinclude is immediate, i.e. it includes the lines from the indicated file at the position of

the qinclude command. This is important to remember that if you define a quantity multiple times,

then only the last instance is used. In other words, a file containing

 scale=2.0

 scale=3.0

tells DelPhi to set the scale to 3 grids/Å. This is the reason we include a

write(specifier,off) command. If you have a default file which enables a write, you can

still turn it off without modifying the default file.

Can a qinclude file contain a qinclude file? But of course. At present one can nest qinclude files up

to ten deep. If a qinclude file does not exist DelPhi will tell you so and move on to the next

command. If there is no file passed to qinclude, i.e.

 qinclude()

then, if it exists, the default include file ~/qpref.prm is passed. Qinclude is a special command

and as such always requires its own line, i.e. do NOT add more commands to a line which start

with a qinclude command (not even comments).

INSOBJ(Removed and OBJECTS are no longer supported! Instead users are suggested

to use Protein_Nano Object Integrator (ProNOI)

http://compbio.clemson.edu/downloadDir/ProNO_Integrator.zip to create, visualize and

manipulate atomistic-style objects and use them in conjunction with standard Protein Data

Bank files.)

This function is somehow different from the others in the sense that it doesn't have any argument, if

it is written in a line of a prm file, it launches the routine that allows the user to insert objects,

charge distributions etc. (see description)

Return to TOC

4.4 Index of Statements and their shorthand

Statement Long Form Short 2L abr Default Value

AUTOCON

AUTOCONVERGENCE

AUTOMATICCONVERGENCE

AUTOC AC TRUE

BOUNDARYCONDITION

BOUNDARYCONDITIONS
BNDCON BC 2(=DIPOLAR)

BOXFILL

PERCENTFILL
PERFIL PF 80

http://compbio.clemson.edu/downloadDir/ProNO_Integrator.zip

PERCENTBOXFILL

CHEBIT CHEBIT CI FALSE

CLCSRF CLCSRF CS FALSE

CONVERGENCEFRACTION CONFRA CF 1

CONVERGENCEINTERVAL CONINT CI 10

EXITUNIFORMDIELECTRIC EXITUN XU FALSE

EXTERIORDIELECTRIC

EXTERNALDIELECTRIC
EXDI ED 80

FANCYCHARGE

SPHERICALCHARGEDISTRIBUTION
FCRG FC FALSE

GRIDCONVERGENCE GRDCON GC 0.0

GRIDSIZE GSIZE GS AUTOMATIC

INTERIORDIELECTRIC INDI ID 2.0

IONICSTRENGTH

SALTCONC

SALTCONCENTRATION

SALT IS 0.0

IONRADIUS IONRAD IR 0.0/2.0

ITERATION

ITERATIONS

LINEARITERATION

LINIT LI AUTOMATIC

LOGFILECONVERGENCE LOGGRP LG FALSE

LOGFILEPOTENTIALS LOGPOT LP FALSE

MAXC (new!) MAXC XC 0.

MEMBRANEDATA NOT USED MD FALSE

NONLINEARITERATION NONIT NI 0

NONLINEARITERATIONS

PERIODICBOUNDARYX PBX PX FALSE

PERIODICBOUNDARYY PBY PY FALSE

PERIODICBOUNDARYZ PBZ PZ FALSE

PHICON PHICON FALSE

PROBERADIUS PRBRAD PR 1.4

RADPLOEXT (new!) RADPOL RL 1.

RADPR2 (new!) RADPR2 R2 PRBRAD

RELAXATIONFACTOR RELFAC RF 0.9975

RELPAR (new!) RELPAR RR 1.

RMSC (new!) RMSC MC 0.

SALT2 (new!) SALT2 S2 0.

SCALE SCALE SC 1.2

SOLVPB SOLVPB SP TRUE

VAL+1 and similar (new!) VAL+1 +1 1

4.5.1 Full list and Statement description

GSIZE: An odd integer number of points per side of the cubic lattice, min=5, max=571 (=NGRID,

platform dependent). A larger grid size will in general mean a better resolution representation of the

molecule on the lattice. This will results in more accurate potentials, but will require more time.

The number of iterations required to reach a certain convergence will increase approximately

linearly with parameter GS. Since the time per iteration will go up as the cube of this parameter the

amount of calculation will thus increase at about the fourth power of GS. Example: gsize=65 or

gs=65.

SCALE: The reciprocal of one grid spacing (grids/angstrom). Example: scale=1.2 or sc=1.2.

PERFIL: A percentage of the object longest linear dimension to the lattice linear dimension. This

will affect the scale of the lattice (grids/angstrom). The percentage fill of the lattice will depend on

the application. A large percentage fill will provide a more detailed mapping of the molecular shape

onto the lattice. A perfil less than 20% is not usually necessary or advisable. A very large filling

will bring the dielectric boundary of the molecule closer to the lattice edge. This will cause larger

errors arising from the boundary potential estimates, which are set to zero or approximated by

coulombic/Debye-Huckel-type functions using a uniform solvent dielectric. The error will be

minimal for higher salt concentrations or weakly charged molecules. Smaller percentages will

increase the accuracy of the boundary conditions, but result in a coarser representation of the

molecule. Higher resolution can be achieved more efficiently using focusing.

Example: perfil=40 or pf=40.

NOTES:

 If the molecule is not centered in the origin of the coordinate system, the perfil reflects the

percentage of the system that is actually contained in the lattice. For example, if the maximum

dimension of a molecule is 100Å, there is no offset and perfil is 50%, then the box side will be

200Å; but if there is an offset of 20Å in the maximum dimension direction, then the box side will

be 280Å. (new!)

 Scale, grid size and perfil are not independent variables so they cannot all be assigned

simultaneously in a single run. In any quantitative calculation, the largest possible scale should be

used, preferably greater than 2 grids/angstrom. Without focusing, a perfil of around 50% or 60% is

reasonable. For example, if scale is set to 2 and perfil is set to 50, the grid size is calculated

automatically given the size of the structure. For larger molecules this could mean a prohibitively

large memory requirement. In this case a compromise must be found or focusing could be used.

Regardless of grid scale, calculations should be repeated at different scales to assess the size of

lattice resolution errors.

 A good approach to the calculation could start with a small percentage, say 20%, using

Debye-Huckel boundary conditions, and then focus in to say 90% or more, in one (or two) stages,

using focusing boundary conditions for the second (and third) runs. It is not necessary for the

molecule to lie completely within the grid although then the potential boundary conditions must be

generated by focusing. However when calculating solvation energies with box fills of > 100%

remember that unexpected results may be obtained since parts of the surface, (and perhaps

some charges) are not included in the grid.

INDI: The internal (molecules) dielectric constant. It is used only in single molecule systems for

compatibility with the old version. A value of INDI=1 corresponds to a molecule with no

polarizability- the state assumed in most molecular mechanics applications. INDI=2 represents a

molecule with only electronic polarizability (i.e. assuming no reorientation of fixed dipoles, peptide

bonds, etc). A value of 2 is based on the experimentally observed high frequency dielectric

behavior of essentially all organic materials. INDI=4-6 represents a process where some small

reorganization of molecular dipoles occurs which is not represented explicitly (for example in

modeling the effects of site directed mutagenesis experiments, when the structure of the wild type,

but not mutant protein is known). According to M.K. Gilson and B. Honig, Biopolymers, 25:2097

(1986) for instance, materials having similar dipole density, dipole moment and flexibility as

globular proteins have a dielectric between 4 and 6. In modeling any process where large

reorientations of dipoles, or large conformational change occurs, i.e. upon folding or denaturation,

using a simple dielectric constant for the molecule would be inappropriate, and the change in

conformation should be modeled explicitly.

Example: indi=2 or id=2.

EXDI: The external (solution) dielectric constant. A value of EXDI=1 corresponds to the molecule

in vacuum, EXDI=80 to the molecule in water. Depending on the application runs with EXDI equal

to either of these values may be used to represent different states in a thermodynamic cycle.

Example: exdi=80 or ed=80.

PRBRAD: A radius (Å) of probe molecule that will define solvent accessible surface in the Lee

and Richard's sense. In combination with the atomic van der Waals radii in the siz file, PRBRAD

determines the regions of space, and hence the lattice points, that are inaccessible to solvent

molecules (water). Suggested value is PRBRAD 1.4 for water. To understand how these parameters

work, you should be familiar with the concepts of contact and solvent accessible surface, as

discussed by Lee and Richards, and by Mike Connolly. For the purpose of DelPhi, any region of

space that is accessible to any part of a solvent (water) molecule is considered as having a dielectric

of EXDI. A value of zero for PRBRAD used with a siz file containing the standard van der Waals

radii values will assign any region of space not inside any atom's van der Waals sphere to the

solvent. For more details, please refer to Rocchia et al. J. Comp. Chem. paper.

IONRAD: The thickness of the ion exclusion layer around molecule (Å). IONRAD, in

combination with the atomic van der Waals radii in the siz file, determines the regions of space,

and hence the lattice points, which are inaccessible to solvent ions. Suggested values is IONRAD =

2.0 for sodium chloride. For the purpose of DelPhi, a solvent ion is considered as a point charge,

which can approach no closer than its ionic radius, IONRAD, to any atoms van der Waals surface.

The ion excluded volume is thus bounded by the contact surface, which is the locus of the ion

centre when in van der Waals contact with any accessible atom of the molecule. A zero value for

IONRAD will just yield the van der Waals surface. A non zero value of IONRAD will thus

introduce a Stern, or ion exclusion layer, around the molecule where the solvent ion concentration

will be zero and whose dielectric constant is that of the solvent, EXDI. Example: ionrad=2 or

ir=2.

SALT: The concentration of first kind of salt,(moles/liter). In the case of a single 1:1 salt, it

coincides with ionic strength. Example: salt=0.14 or is=0.14.

BNDCON: An integer flag specifying the type of boundary condition imposed on the edge of the

lattice. Example: bndcond=4 or bc=4. Allowed options:

 (1) - potential is zero.

 (2) – dipolar. The boundary potentials are approximated by the Debye-Huckel potential of

the equivalent dipole to the molecular charge distribution. Phi is the potential estimated at a given

lattice boundary point, q+ (q-) is the sum of all positive (negative) charges, and r+(r-) is distance

from the point to the center of positive (negative) charge, lambda is the Debye length.

ϕ= q+

e

−
r+

λD

ε solv r+

+ q−
e

−
r−
λD

εsolv r−

 (3) – focusing. The potential map from a previous calculation is read in unit 18, and

values for the potential at the lattice edge are interpolated from this map- clearly the first map

should have been generated with a coarser grid (greater distance between lattice points) and

positioned such that current lattice lies completely within old lattice or the program will protest. For

focusing boundary conditions, the program reads in a potential map from a previous run, and

compares the scale of the focusing map with that for the current run. If they are the same, it

assumes that this is a continuation of a previous run, and iteration of the potentials contained in the

previous potential map is continued. If the scale is not the same, it checks to ensure that the new

lattice lies completely within the old lattice before interpolating the boundary conditions.

 (4) – coulombic. They are approximated by the sum of Debye-Huckel potentials of all the

charges. qi is the i'th charge, and ri is the distance from the lattice boundary point to the charge.

ϕ=∑
i
qi

e

−
r i

λD

ε solv r i

LINIT: An integer number (> 3) of iterations with linear equation. The convergence behavior of

the finite difference procedure is reported in the log file as both the mean and maximum absolute

change in potential at the grid points between successive iterations. The latter is probably more

important since it puts an upper bound on how much the potential is changing at the grid points. It

is suggested that sufficient iterations be performed to give a final maximum change of less than

0.001 kT/e. The number of iterations per se is not important, as long as its sufficient to give the

required convergence. The convergence behavior can also be judged from the slope of the semi-log

plot of the mean and max changes given in the log file. LINIT is best determined by experience,

since the convergence rate depends on several factors. Start with say 100 iterations, and then

increase the number of iterations until sufficient. Note that a run can be restarted by using focusing

boundary conditions with exactly the same SCALE, PERFIL and ACENTER values (see note 5).

Some guidelines are: The number of iterations needed will increase with grid size (GSIZE). It will

decrease with decreasing PERFIL, since the potentials converge more rapidly in the solvent. It will

decrease with increasing ionic strength. The number is fairly insensitive to the size and number of

charges on the molecule. Example: linit=400 or li=400.

NONIT: An integer number (> = 0) of non-linear iterations. If linear PB equation only is required,

NONIT is set to be 0. Example: nonit=400 or ni=400.

FCRG: A flag, normally set to false indicating a linear cubic interpolation of charges to grid

points; set to true this turns on a spherical charge interpolation. If an atomic charge does not lie

exactly on a grid point, then it must somehow be distributed onto the grid points. If this flag is set

false, the standard algorithm is used which distributes a charge to the nearest 8 grid points (quick

and simple, see the Proteins paper of Klapper et al.). If this flag is set true, then an algorithm is used

which gives a more spherically symmetric charge distribution, although the charge is now spread

over a wider region of space. For certain cases this gives higher accuracy for potentials less than 3

grid units from a charge (see Gilson et al. J.Comp. Chem paper), although this point has not been

exhaustively explored.

LOGPOT: A flag that activates the potential listing during the run.

Example: logpot=t or lp=t or logfilepotentials=t.

LOGGRP: A flag that activates the convergence plot during the run.

Example: loggrp=t or logfileconvergence=t or lg=t.

CONINT: A flag that determines at what iteration interval convergence is checked, by default it

equals 10.(usually not modified from default) The idea behind this parameter is to allow

convergence to be checked less frequently to reduce the amount of time spent. Example: conint=10

or ci=10 or convergenceinterval=10.

CONFRA: A flag that determines the convergence fraction. Iit decides what fraction of grid points

are used in assessing convergence (1=all, 2=half, 5=fifth etc). By default it equals 1 (usually not

modified from default). Example: confra=10 or cf=1 or convergencefraction=1.

PBX,PBY,PBZ: They are the three logical flags (t/f) for periodic boundary conditions for the x,y,z

edges of the lattice respectively. Note that periodic boundary conditions will override other

boundary conditions on edges to which they are applied. Periodic boundary conditions can be

applied in one or more of the x, y or z directions. When applied, the potential at each periodic

lattice boundary point is iterated by supplying its missing neighbor(s) from the corresponding point

on the opposite edge of the lattice. This can be used for example to model an infinite length of

DNA. Assume that the helical axis of the DNA in the pdb file is aligned along the Z axis. The

periodic boundary flags are set to false, false, true, and the percent fill of the box, PERFIL, is

adjusted so that an integral number of turns just fill the box in the Z direction. Normal boundary

conditions are applied to the X,Y boundaries. By setting two, or three of the boundary flags to true,

one can simulate 2 dimensional or 3 dimensional cubic lattices of molecules. Example: pbx=t or

px=t or periodicboundaryx=t.

AUTOC: A flag for automatic convergence. The program by default will automatically calculate

the number of iterations needed to attain convergence. It is automatically set if no number of

iteration is specified otherwise. See also LINIT and GC options Example: autoc=t or

automaticconvergence=t or autoconvergence=t or autocon=t or ac=t.

EXITUN: A flag to terminate the program if uniform dielectric is present (INDI=EXDI). By

default it is false. (usually not modified) Example: exitun=f or exituniformdielectric=f or

xu=f.

GRDCON: The value for grid convergence. When set, the criterion used to stop the iterative

process is the difference on values of grid energy, this option might slow down the calculation a bit,

but provides a very strong criterion. Example: grdcon=0.001 or gc=0.001 or

gridconvergence=0.001.

RELFAC: The externally assigned value for spectral radius (define spectral radius). (usually not

modified from default) Example: relfac=0.9975 or relaxationfactor=0.9975 or

rf=0.9975

CHEBIT: A flag, that if it is true the relaxation parameter for linear convergence process is set

equal to 1. (usually not modified from default) Example: chebit=t or ci=t .

SOLVPB: A flag, which controls the Poisson-Boltzmann solver. Normally DelPhi will invoke the

Poisson-Boltzmann solver but if you are interested in using DelPhi for other things such as

calculating surface area or producing a GRASP viewable surface file, you can turn off the solver

using this option. Example: solvpb=t or sp=t.

CLCSRF: A flag, that when set to true, outputs a GRASP viewable surface file in the name

grasp.srf. Example: clcsrf=t or cs=t.

PHICON: A flag, that maps charge density in a .phi file, with a procedure that is equivalent to the

one that saves the potential map. phicon=f produces standard potential output in kT/e

(approximately equal to 25.6 mV at 25oC, or to 0.593 kcal/mole of charge). phicon=t will give net

solvent ion concentration output in M/l, where for every lattice point inside the molecule the

concentration is 0, and the outside concentration is obtained from: (-ionic

strength*2*sinh(potential)) or its linearized version if linear PBE is used. Example: phicon=t.

RADPOLEXT: A default radius for point charges in a continuum (only in objects) (see self-

reaction field energy), Example: radpolext=1 or radpol=1 or rl=1

RELPAR: A manually assigned value for relaxation parameter in non-linear iteration convergence

process. (see non-linear equation convergence) Example: relpar=0.8 or rr=0.8

SALT2: The concentration of second salt (if present) expressed in Moles/liters. (see multi-salt

option) Example: salt2=0.2 or s2=0.2

RADPR2: The value for effective probe radius relative to the part of the molecule which is internal

to an object. (see geometric objects) (This option is still under testing on Jan 2002) Example:

radpr2=2 or r2=2.

VAL+1: (VAL-1 VAL+2 VAL-2) A number > 0, valence of positive (negative) ion constituting

salt one (two). (see multi-salt option) Example: val+1=1 or +1=1.

RMSC: The convergence threshold value based on root mean square change of potential. (see

convergence hints) Example rmsc=0.0001 or mc=0.0001

MAXC: The convergence threshold value based on maximum change of potential (suggested). (see

convergence hints) Example maxc=0.0001 or xc=0.0001

Return to TOC

5. FILES

Many files are used to input and output data. Each type of data or output has its own file. The

default name for the unit [number] file is fort.[number]. Here follows a description and format

for each of them.

INPUT FILES:

UNIT 10

Default extension prm. Contains input parameters. See the section on Statements and Functions for

full details.

A sample parameter file

UNIT 11

Default extension siz. List describing the van der Waals radii to be assigned to each atom/residue

pdb record type. A sample file is provided together with the code. Note the atom and residue fields

ignore case and leading blanks. The residue field may be left blank (wild card), causing a match

with the given atom type of any residue. ONLY if the residue field is left blank, the LAST 5

characters of the atom record may be left blank. In this case all atom types beginning with the letter

in column 1 will be matched. Records of greater specificity override those of less specificity.

Beware of ambiguities like calcium (ca) and alpha carbon! All atoms of an input pdb file must be

assigned a radius through the siz file, even if it is 0, or the output will be flagged with a warning.

UNIT 12

Default extension crg. List of the atomic charges to be assigned to each atom/residue/number/chain

pdb record type. A sample file is provided together with the code. The ascii fields for atom, residue,

number and chain ignore case and leading blanks. Any field except the atom name may be left

blank and will be treated as a wild card. Records of greater specificity override those of lesser

specificity as for the siz file above.

search order:

 atom_res_num_chain

 atom_res_num______

 atom_res_____chain

 atom_res__________

 atom_____num_chain

 atom_____num______

 atom_________chain

 atom______________

Atoms that do not find a match in the crg file will be neutral (q=0.0)

file must have a line: atom__resnumbc_charge_

Examples:

A line as shown below will charge only the N atom of ALA residues.

N ALA -0.400

A line as show below will charge all N atoms.

N -0.400

Note that position of text phases and numbers is strictly determined and can’t be changed!

UNIT 13

A Brookhaven protein data bank standard format file containing atom labels and coordinates, or a

modified OBJECTFILE. Only records starting with ATOM or HETATM are read; if objects or

multi-dielectric option are used, also the keywords MEDIA, OBJECT, CRGDST, DATA are also

read. The default extension is pdb. The precise format is essential; using Fortran syntax,

(6A1,I5,1X,A4,A1,A3,1X,A1,I4,A1,3X,3F8.3,2F6.2,1X,I3) is used for the atom record. From left

to right, the fields contain 'ATOM--' or 'HETATM' atom serial number, atom name, alternate

location indicator, residue name, chain identifier, residue sequence number, residue insertion code,

x, y, and z coordinates, occupancy, temperature factor, footnote number. Note that the program

treats the residue number as an ascii string, not as an integer. As a warning to the user, there are

many variations, and even outright errors found in the format of pdb files obtained from the web. It

would be wise to double-check the contents of a file to save any heartache.

UNIT 15

Default extension: pdb or frc. List of coordinates where site potentials are output in Unit 16. Format

as for Unit 13.

UNIT 18

Default extension phi, potential map for focusing boundary conditions. Potentials are in kT/e

(25.6mV, 0.593 kcal/mole/charge at 25°C).

The format of the file is given below in case that the user wants to adopt the file to its own

software. If the users wants to visualize the file with Grasp or Insight, no action should be taken.

 unformatted (binary file)

 character*20 uplbl

 character*10 nxtlbl,character*60 toplbl

 real*4 phi(65,65,65)

 character*16 botlbl

 real*4 scale,oldmid(3)

uplbl, nxtlbl, toplbl, botlbl are ascii information. Phi is the 3D array containing values of potential

for all the lattice points. Index order is x,y,z. Scale is lattice scale in grid/Å. Oldmid is the x,y,z

coordinates in real space (angstroms) of the centre of the lattice: thus the real space coordinates

x,y,z of the lattice point for phi(IX,IY,IZ), for the case where IGRID = 65, are:

 x = (IX - 33)/scale + oldmid(1)

 y = (IY - 33)/scale + oldmid(2)

 z = (IZ - 33)/scale + oldmid(3)

where 33 = (65+1)/2 is the middle point of the grid.

OUTPUT FILES:

UNIT 6

Output from the program, including error messages and convergence history. When run

interactively, appears on standard output. Default extension log when run in batch

UNIT 14

If the flag IBIOS (BIOSYM) is false, then output is in DELPHI format, default extension phi. The

output can be either a potential map or a concentration map, with format same as for unit 18 above.

The output phi map has the same scale as used in the calculation (i.e, variable) unless

format=grasp is specified. The grasp-style phi map format will always interpolate to a 65 x 65 x

65 grid for use in Grasp (or other hardwired display/analysis programs).

If the flag IBIOS (BIOSYM) is true, then output is in INSIGHT format, default extension ins. This

is an unformatted (binary) file. As it was explained above, the format is provided only for

completeness in case that one wants to visualize the file with different than Insight software.

 character*132 toplbl !ascii header

 integer*4 ivary !0 => x index varys most rapidly

 integer*4 nbyte !=4, # of bytes in data

 integer*4 inddat !=0, floating point data

 real*4 xang,yang,zang !=90,90,90 unit cell angles

 integer*4 intx,inty,intz !=igrid-1, # of intervals/grid side

 real*4 extent !maximum extent of grid

 real*4 xstart,xend !beginning, end of grid sides

 real*4 ystart,yend !in fractional

 real*4 zstart,zend !units of extent

 write(14)toplbl

 write(14)ivary, nbyte, intdat, extent, extent, extent,

 xang, yang, zang, xstart, xend, ystart, yend, zstart,

 zend, intx, inty, intz

 do k = 1,igrid

 do j = 1,igrid

 write(14)(phimap(i,j,k),i=1,igrid)

 end do

 end do

Note that for grid sizes less than 65, INSIGHT format files will occupy less disk space than the

corresponding DELPHI files. ins files are designed as input to a Biosym Corp. stand alone utility

called CONTOUR, supplied with INSIGHT Version 2.4. This program will produce contour files

for display with INSIGHT. 33

If the flag CUBE is true, then output is in CUBE format (Gaussian Cube). Example:

Out(phi,file=’phimap.txt’,form=’cube’) – this command creates file ’phimap.txt’ in the

cube-format.

There is a source code for saving in the ‘cube-format’.

 write(6,*)' Potential map in cube format '

 write(6,*)'written to file',filnam

 write(14,*)'qdiffxs4 with an improved surfacing routine'

 write(14,*) 'Gaussian cube format phimap'

 coeff=0.5291772108

 stepsize=1.0/scale

 do i=1,3

 origin(i)=oldmid(i)-stepsize*(igrid-1)/2/coeff

 enddo

 write(14,'(i5,3f12.6)') 1, (origin(i),i=1,3)

 write(14,'(i5,3f12.6)') igrid, stepsize/coeff,0.0,0.0

 write(14,'(i5,3f12.6)') igrid, 0.0,stepsize/coeff,0.0

 write(14,'(i5,3f12.6)') igrid, 0.0,0.0,stepsize/coeff

 write(14,'(i5,4f12.6)') 1,0.0,0.0,0.0,0.0

 do i = 1,igrid

 do j = 1,igrid

 write(14,'(6E13.5)')(phimap(i,j,k),k=1,igrid)

 end do

 end do

UNIT 16

Default extension frc. A list of potentials and fields at coordinates in pdb file read on unit 15.

Format: 12 lines of ascii header information, followed by a variable number of records written as:

 230 format(8G10.3)

 write(16,230)xo,chrgv,phiv,fx,fy,fz

where xo(3) are x ,y ,z coordinates of charge, chrgv is the charge value, phiv is the potential (in

kT/e) at that point, and fx, fy, fz are the field components (in kT/e/Å). The last line of the file is the

sum of chrgv*phiv/2 over all the charges in the file. This quantity can be used for calculating

solvation and interaction energies.

UNIT 17

Dielectric bit map, default extension: eps. If grid size=65, there are 3*65*65*65 lines joining

neighboring grid points, 65*65*65 each in of the x,y,z directions. The midpoint of each line is given

a value of 1 if it lies within the solvent accessible volume of the system, 0 if outside. This defines

the shape of the molecule and separates the space into different dielectric regions. The format of the

output files is described below in case that the user wants to build own software to visualize the

map. For compact output purposes the array of INTEGER*4, epsmap(65,65,65,3), is compressed

into an INTEGER*2 array, neps(5,65,65), by bit-mapping: the first index of epsmap, range 1-65 is

compressed into the first index of neps, range 1-5, where the indices 1-16 go into bits 0-15 of the

word with index 1, indices 17-32 -> bits 0-15 of word with index 2 etc. The array neps is then

written to an unformatted binary file:

 write (17) imap, scale, oldmid

 write (17) neps

where imap is an unused integer*4 flag and scale, oldmid(3) are real*4 scaling information as

above.

Note (new!) in the case that the solute is composed of more than one dielectric media, in this

release (v.6 up to rel. 1.1) the additional information is not included in the fort.17, in order to

maintain compatibility with software packages that take it as an input.

UNIT 19

If the "modified pdb file" option is activated in a WRITE/OUT function, a logical flag (t/f), iatout,

will be set to true and will produce a modified PDB file written on unit 19, containing the:

radius and charge assigned to each atom written after the coordinates, in the fields used for

occupancy and B factor. It is recommended that this option be set initially so that the user can

check that all the radius and charge assignments are correct. An additional check on the charge

assignment can be made by looking at the total charge written to the log file.

Return to TOC

6. Other Features In DelPhi v.6

Here below are described some of the new features that have been introduced to DelPhi v.6:

1. MULTI-DIELECTRIC CODE

2. GEOMETRIC OBJECTS

3. GEOMETRIC-SHAPED CHARGE DISTRIBUTIONS

4. NON-LINEAR PBE SOLVING ROUTINE

5. MULTI-SALT CODE

6. ENERGY PARTITIONING

7. SELECTING OUTPUT FORMAT USING “ideveloper” OPTION (DelPhi v.6 only)

1. MULTI-DIELECTRIC CODE

 Earlier versions of DelPhi handle a scenario where a single molecule is immersed in a

solution. In other words, only a "two-media" world was considered. In the present version, a system

with many different objects having different dielectric constant can be modeled. These objects can

be either sets of atoms obtained from a pdb file or geometric objects.

Note: In order to gain better accuracy for reaction field energy, the location of polarization charges

is normally projected onto the molecular surface. If a molecule is immersed in an object, the

molecular surface would be built inside the object. If two molecules with different dielectric

constants come in contact or overlap, the molecular surface at their interface is not built. (In fact, it

doesn't make sense to do so in that case.) Instead, the polarization charges are not projected

anywhere but are left at their own grid point locations.

Return to new features

2 GEOMETRIC OBJECTS

A complete description of a molecule is not always the most convenient way to represent it; this

could be because a detailed calculation is too computationally expensive, or because the user

prefers a simpler, schematic description of a system for computing semi-quantitative results.

Therefore we added to DelPhi a new way to insert geometrical dielectric objects and charge

distributions of simple geometrical shapes. The user can now insert various dielectric objects of

different types, where a molecule is just one of the possible choices. In order to accomplish this, a

set of data structures has been built that contains:

•) an ordinal number, that labels the object.

•) a field that contains the dielectric constant of the medium constituting the object.

•) an integer called "objectype" that tells if the object is a molecule (0), a sphere (1), a

cylinder (2), a cone (3) or a box (4).

•) the parameters related to its dimension and position, which are:

for a molecule : name of the .pdb file,

for a sphere (a): center C (described by coordinates x, y, z) and radius, R. Example:

0.0,0.0,0.0,5 for a sphere centered in the origin and having a radius of 5Å.

for a cylinder (b): centers of the two bases (A and B) and radius. Example:

0.0,0.0,0.0,0.0,0.0,1.0,10.0 for a cylinder where A=(0,0,0), B=(0,0,1) and

R=10Å.

for a cone (c): center of the base A, vertex B, opening angle (in degrees). Example:

0,0,0,0,0,1,30 for a cone where A=(0,0,0), B=(0,0,1) and angle=30º.

for a box (d): four adjacent vertices disposed as the origin and the three vectors of a

right-handed vector basis (x, y and z, respectively). Example:

0,0,0,1,0,0,0,2,0,0,0,3 for a box where A=(0,0,0),B=(1,0,0),C=(0,2,0) and

D=(0,0,3).

There is also the possibility to create more complex shapes: if two objects turn out to be

overlapping, the overlapping region will have the dielectric constant of the object assigned later. In

fact, the dielectric constant of the last assigned object overrides the dielectric constant of all

the objects assigned beforehand. Exploiting this fact, the user can build unions or intersections of

the mentioned objects, each of them having the desired dielectric constant, ending up with a more

complex scenario.

As a rule, all molecules superimpose on the other objects regardless of the order in which they

have been inserted.

We are currently testing the possibility of using a different probe radius to build the molecular

surface (MS) on the part of any molecule that is buried within an object. This value is assigned

through the radpr2=[value] statement. By default, it is set equal to the "regular" probe radius.

At present, boundary conditions cannot be computed for a grid that contains an object that is not

completely immersed in the cube. If the user is interested to such a system, he must start with a low

percentage filling (e.g. 50% or 60%) where the usual boundary conditions are sufficient. Then he

must increase the perfil until it gets higher than 100% using the focusing method.

Return to new features

3 GEOMETRIC-SHAPED CHARGE DISTRIBUTIONS

In the new DelPhi v.6 program, various types of uniform charge distributions can be inserted and

the user can specify if these belong to an object or not. This is really useful when we are dealing

with a charge very close to an interface between different dielectric media and we want to be sure

the program assigns the right dielectric to it.

The charge distributions that have been taken into consideration may have the same overall

shapes of the objects plus some other additional ones.

In fact, the data structure is built to contain:

•) an ordinal number, that labels the distribution,

•) a field that tells if the distribution is within the volume or only onto the surface,

•) a field that tells if the distribution is "free" or belongs to one of the previously inserted

objects, if it is free, the medium where it is located is decided based on epsilon map

(grid discretized), if it is “linked” to some object, its medium will be the one of the

object (see note below). This is useful for charges close to the boundary between

different media to avoid erroneous assignments,

•) a field which contains the total charge amount,

•) a number called "distrtype" that tells if the shape is spherical (1), cylindrical (2), conic

(3), box-shaped (4), point charge (8), linear (9), disk-shaped (10), rectangular (11),

•) the parameters related to its dimension and position, which are the same as

corresponding objects if "distrtype" is less or equal to 4, and:

the point (x,y,z) coordinates for number 8, Ex.: 1,0,0 for the point (1,0,0)

the two extremes A and B for number 9, Ex.: 0,0,0,1,0,0 for A(0,0,0) and B(1,0,0)

the disk center and three points disposed as the three vectors of a right-handed

vector basis (x, y and z, respectively), and the disk radius for number 10,

Ex.: 0,0,0,1,0,0,0,1,0,0,0,1,5 for a disk lying on the x-y plane, centered in

(0,0,0), and having radius R=5Å.

three adjacent vertices disposed as the origin and the two vectors of a right-handed

two dimensional vector basis (x and y, respectively), for number 11. Ex.:

0,0,0,1,0,0,0,1,0 for a rectangle having the following vertices:

A(0,0,0),B(1,0,0),C(0,1,0),D(1,1,0)

Note: the distinction between “free” and “bound” or “linked” charge is a consequence of

discretization. Because of it, a charge can be assigned in a location where there is a different

medium from the one where the charge was originally set to be. If the user knows which is the

medium embedding the charge, then he should link the charge to the correct object, otherwise, the

charge will be classified as “free”.

Return to new features

4. NON-LINEAR PBE SOLVING ROUTINE

 An algorithm has been implemented that can solve the non-linear PBE, as described in

Rocchia et. al. Journal of Physical Chemistry B paper. A good relaxation parameter must be used

for fast and reliable convergence of the non-linear equation. A heuristic algorithm is used to

estimate it; nonetheless, for some particularly pathological conditions, it is possible that the choice

is not optimal and that the convergence is very slow or even absent.

In order to deal also with those systems, the new statement relpar=[value] can be put in the

parameter file to manually assign the relaxation parameter.

A general set of guidelines to the choice of the relaxation parameter follows:

The optimal relaxation parameter for a non-linear system generally turns out to be less than 1.

Pathological conditions like a very high charge in proximity to the surface, ionic strength close to

zero but not null and some particular scale values, can require a parameter much lower, down to

0.001 or even lower. On the other hand, a too low value has the drawback of slowing down the

/../walter/delphi/ManualeNuovo/JPCRocchia.pdf

convergence and, in the worst case, to give only an illusion of convergence. Thus, the advice is to

start with an intermediate value and to decrease it until the convergence is reached.

Convergence hints again:

The hardest part for the convergence process is at the beginning, when the non-linearity of the

equation is slowly added. In this phase the relaxation parameter could be quite low, and thus can

hinder the continuation of the convergence process. This is the rationale behind the heuristic

algorithm.

A good convergence is characterized by a low max change in the potential together with a

relaxation parameter not too close to zero, say greater than 0.1 or similar. If the convergence is

absent or not satisfying, the user can decide to use a fixed, but suitably tuned, relpar which should

be as high as possible, provided it allows for convergence.

Two more statements have been added, that are valid for both linear and non linear cases:

rmsc=potential root mean square change threshold,[kT/e] and maxc= potential maximum change

threshold, [kT/e] that allows two new convergence criteria. The first concerns the rms change and

the second the maximum change of grid potential between successive iterations. The second one is

of particular interest because it sets an upper bound on the error in potential throughout the grid.

Both criteria can be assigned together with the number of iterations, linit or nonit; the program will

stop iterating as soon as one of the assigned criteria is satisfied.

Return to new features

5. MULTI-SALT CODE

Including the effects of salts of different valences makes a large difference when calculating the

electric field of a solute in solution. Handling multiple valences properly requires using the more

general expression for the charge in the original PBE. The ionic strength is then calculated

accordingly to its general definition: I=
1

2
∑ i

zi
2Ci

bulk

; the concentration of each ion is related to

the one of the salt assuming electro-neutrality for each salt, that is: ∑ i
zi C i

bulk= 0 for the ions of

every single salt in solution.

Some new statements have been added to handle this new situation:

salt=[conc first kind of salt, moles/liter], val+1=[valence of positive ion in salt type 1], val-

1=[valence of negative ion in salt type 1];

salt2=[conc second kind of salt, moles/liter], val+2=[valence of positive ion in salt type 2],

val-2=[valence of negative ion in salt type 2];

Return to new features

6. ENERGY PARTITIONING

A new partitioning of the energy is considered and described in details in the article of the Journal

of Physical Chemistry B paper. Accordingly, the electrostatic energy is subdivided into: coulombic,

reaction field, self-reaction field, external ion contribution, osmotic pressure term, "rho*phi"

(electrostatic stress). The last three terms only appear when the ionic strength is greater than zero.

The last two terms cancel out in the linear PB equation.

Coulombic and reaction field energies are calculated using Coulomb's law and Gauss's theorem

as described in the J. Phys. Chem. paper.

The osmotic and electrostatic stress terms, defined in the same paper, are calculated whenever

the program is asked to run nonlinear iterations; their contribution arises from the solvent inside the

box.

The calculation of the external ion contribution is toggled by the flag ion in the energy

statement, it calculates the direct interaction of ions to real charges.

This direct calculation needs some comments: it calculates the coulombic interaction between the

ions in solution (screened by the surrounding polarized water). First of all, it can be

computationally expensive, especially if the grid size is very high. Secondly, this energy neglects

all of the ionic contribution due to the ions located outside the box. This can result in a

/../walter/delphi/ManualeNuovo/JPCRocchia.pdf
/../walter/delphi/ManualeNuovo/JPCRocchia.pdf

underestimation of the real contribution, especially if the percentage filling is high. In the linear

case this problem has been reduced almost completely by a mixed numerical/analytical technique.

The analytical contribution of the first term in a spherical expansion of the molecular system

outside the box is calculated. So the direct ionic contribution is better estimated by the sum of two

terms: the one internal to the box and the one external to the box.

For the non-linear case this is not so easy, because an analytical solution of the non-linear PBE for

the spherical case is not available. The use of the linear approximation routine would result in an

overestimation of the ionic contribution.

Another way to get an estimation of the same energy term is to subtract the grid and reaction

field energy in two cases: with and without salt. This means running the program twice on the

system.

In order to help the user decide if these two runs are necessary, the program estimates and reports

the number of Debye lengths bounded within the grid. This number, together with the ionic

strength, aids the user in estimating the error due to neglecting the ionic contribution outside the

box.

Note: If periodic boundary conditions are used, the estimated external ion contribution will be

taken only in the directions where periodicity is NOT invoked. This is done in order to give an

estimate of energy per periodic cell.

The self-reaction field energy is calculated whenever the usual reaction field energy is

calculated. It is an attempt to estimate the energy that the system gains when a point charge is

moved from vacuum to a dielectric medium. In fact, when a charge moves from vacuum to a

dielectric a polarization charge of opposite sign builds up around it. This results in an

energetically favorable process. The higher the dielectric constant of the medium, the higher is

the amount of polarization charge and the more energetically favorable is the process. In our

model, it is assumed that polarization charge builds up spherically around any real point charge,

at a distance the user can decide via the statement radpolext=[radius], which by default is set to

be 1Å. This information is no attempt to give a quantitative estimation of this energy but just to

take into account in a more detailed way the fact that the most favorable place for a charge is

within a high dielectric medium. This necessity arises when a system with many different

dielectric regions is studied.SELECTING OUTPUT FORMAT USING “ideveloper” OPTION

(DelPhi V.6 only)

 7. SELECTING OUTPUT FORMAT USING “ideveloper” OPTION (DelPhi v.6 only)

Users now are able to select the output format either in single or in double precision by flipping

over the logical switch “ideveloper” in subroutine defprm. When ideveloper is set to be .true., the

output values have more decimals printed out, which would be useful to have a closer insight of the

changes of certain values.

Return to new features

Return to TOC

Sample parameter file

!example prm file for DelPhi v.6

scale=1.5

perfil=80

in(pdb,file="ala.pdb")

bndcon=4

indi=2

exdi=80

ionrad=2.0

prbrad=1.4

salt=0.001

!out(frc)

!out(modpdb)

!out(phi)

logfileconvergence=true

logfilepotentials=true

energy(s,g,c,ion)

Return to TOC

